
Problem Set 2: Greedy Algorithm

1. Given a set of 2n integers, make n pairs (a1, b1), (a2, b2), . . . , (an, bn) from these 2n integers such that the sum
n

i=1

max{ai, bi} is maximized. Design an algorithm that solves this problem in

(a) (Easy) O(n log n) time

(b) (Medium) O(n) time

2. (Easy) You have landed a cracking job in Bangalore in a company named PpWaterballs. Fortunately,
PpWaterballs has agreed to pay k rupees for your relocation to Bangalore. You have stored your belong-
ing into n boxes where the box i contains box[i] items. The cost of transporting each box is 1 rupee. Design an
algorithm that will relocate the maximum number of items.

3. (Easy) Given two numbers a and b, their absolute difference is |a − b|. Given an array of size n, design an
algorithm to find two number in it with minimum absolute difference.

4. (Medium) At IIT Gandhinagar, students undertake a total of n+ k courses as part of their B.Tech curriculum.
Upon completion of their degree, students have the option to request the institute to convert the grades of k
courses into a pass grade. This feature is thoughtfully designed to address situations where exceptionally bright
students may have encountered difficulties in a few courses, potentially due to personal preferences or other
reasons. By utilising this option, the CPI (Cumulative Performance Index) of such bright students remains
unaffected by a few challenging courses, ensuring a fair evaluation of their overall academic performance. In this
problem, we will change the definition of CPI and ask you to maximise it.

The courses are arranged in an arbitrary order, denoted as c1, c2, . . . , cn+k. Each course ci is assigned a grade gi,
ranging from 0 to 9. The temporary CPI is represented by the concatenation of these grades: g1g2 . . . gn+k. For
instance, if a student receives grades 1, 9, and 7 in courses 1, 2, and 3 respectively, their temporary CPI would
be 197.

The objective is to strategically select k courses from the transcript for removal, with the aim of improving the
grades in the remaining n courses. For example, if given the opportunity to remove one course from the transcript,
the student would select course 1 in the aforementioned scenario. Consequently, their final CPI would be 97.

Formally, students are provided with grades for n + k courses, and they must choose k grades for removal to
maximise the remaining cumulative performance. An efficient algorithm is required to accomplish this task.

5. (Easy) You have a unlimited supply of k coins of denomination 20, 21, . . . , 2k−1 and a number n. You want to
get the change of n. Design an algorithm that will give you the change using minimum number of coins. For
example, to get a change of 5, you require one coins of denomination 4 and 1 respectively.

6. (Hard) You have an unlimited supply of k coins of denomination a1, a2, . . . , ak and a number n. Your want to
check if you can get a change of each number from 1 to n. However, there is one important condition. For making
the change of number i (1 ≤ i ≤ n), you can use each coin only once. Unfortunately, this condition is not easy to
satisfy. For example, if you start with coins 1, 2, 5 and n = 7, then you cannot make the change of 4.

If we also had coins of denomination 4, then the above problem becomes easy. How many new denomination
coin will you use to get the change of all number? Design an algorithm that adds minimum number of new
denomination coins.

7. (Medium) You are given n number (each ranging from 0 to 9) that may contain some duplicates. You want to
remove all duplicate number but there is one important condition: the remaining number(after the removal of
the duplicates) should be maximised. For example, if the initial numbers were 19232192, then the answer is 9321.
Design and analyse an efficient algorithm that performs this task.
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8. (Easy) n people are stranded on an island. You are given the job to rescue them. You have an unlimited supply
of boats but each boat has a maximum weight limit of k and can accommodate at most two people. Given the
weight of all n people on the island, design an efficient algorithm to find the minimum number of boats required
to rescue them.

9. (Medium) You are given an array A of n number which are initially all 0. There is another target array B of
size n such that each entry is B is ≥ 0. You are allowed to perform the following operations: in each round, you
take a subarray of A and increase each element in the subarray by 1. What is the minimum number of rounds
required to reach the target B from A. Design an efficient algorithm to perform this task.

For example, if B = [2, 3, 4, 1], then in the first round we increment all the elements of array A to get A = [1, 1, 1, 1].
In the second round, we increment A[0 . . . 2] to get A = [2, 2, 2, 1]. In the third round, we increment A[1, 2] to get
A = [2, 3, 3, 1] and in the fourth round we increment A[2] to reach the target B.

10. (Easy) You are pairing couples for a very conservative formal ball. There are n men and m women, and you
know the height and gender of each person there. Each dancing couple must be a man and a woman, and the
man must be at least as tall as, but no more than 3 inches taller than, his partner. You wish to maximise the
number of dancing couples given this constraint. Design an efficient algorithm that performs this task.

11. (Easy) You are baby-sitting n children and have m ≥ n cookies to divide between them. You must give each
child exactly one cookie (of course, you cannot give the same cookie to two different children). Each child has a
greed factor gi, 1 ≤ i ≤ n which is the minimum size of a cookie that the child will be content with; and each
cookie has a size sj , 1 ≤ j ≤ m. Your goal is to maximise the number of content children, i.e.., children i assigned
a cookie j with gi ≤ sj . Give a correct greedy algorithm for this problem, prove that it finds the optimal solution.

12. (Medium) In a class, there are n assignments. You have H hours to spend on all assignments, and you cannot
divide an hour between assignments, but must spend each hour entirely on a single assignment. The ith hour you
spend on assignment j will improve your grade on assignment j by B[i, j], where for each j, B[1, j] ≥ B[2, j] ≥
· · · ≥ B[H, j] ≥ 0. In other words, if you spend h hours on assignment j, your grade will be

h
i=1B[i, j] and time

spent on each project has diminishing returns, the next hour being worth less than the previous one. You want
to divide your H hours between the assignments to maximise your total grade on all the assignments. Give an
efficient algorithm for this problem.

13. (Medium) Consider the following preemptive scheduling problem. You are trying to schedule jobs on a machine
that are arriving at different times, and require different numbers of steps to finish. Your schedule can be preemp-
tive, in that you can start one job, then switch to another, then finish the first job. You are trying to minimise
the sum over all jobs of the time they finish. More precisely, the input is a sequence of n jobs, Jobi = (ai, di),
where ai is an integer giving the arrival time of the job (first time step when we could start the job), and di is a
positive integer giving the duration of the job, the number of steps required to finish the job. A schedule specifies
for each time step, which job we are working on. At time step, t, we can only work on Jobi if ai ≤ t; and there
must be at least di steps where we are working on Jobi. The finish time for Jobi is the last time when Jobi is
scheduled. The objective is to find a schedule that minimizes the sum of all the finish times.
Example: Job 1: Arrives at 8 AM: Practice piano. Duration: 3 hours.
Job 2: Arrives at 9 AM. Answer morning email. Duration 1 hour.
Job 3: Arrives at 11 AM. Do CSE homework. Duration 4 hours.
Schedule: 8-9: practice piano; 9-10 answer email; 10-12: practice piano; 12-16: do CSE homework.
Finish times: email: 10; piano: 12; homework: 16. Total: 38.

Give an efficient greedy algorithm for this problem.

14. (Hard) You are given an array A[1 . . . n]. The element A[i] is said to be a local maximum if A[i] > A[i− 1] and
A[i] > A[i+ 1]. You have to change minimum number of entries in A such that there is no local maximum after
the change. Design an efficient algorithm for this problem and prove it correctness.

15. (Medium) You want to create a scientific laboratory capable of monitoring any frequency in the electromagnetic
spectrum between L and H. You have a list of possible monitoring technologies, Ti, i = 1, . . . , n, each with an
interval [li, hi] of frequencies that it can be used to monitor. You want to pick as few as possible technologies
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that together cover the interval [L,H]. Are the following two greedy strategies correct for this problem. Prove
or disprove.

(a) Candidate Greedy Strategy I: First, buy the technology that covers the longest sub-interval within (L,H).
(i.e.,The longest interval (l, h), but not including the sub-intervals (l, L) and (H,h) outside the interval we
need covering.) At each subsequent step, buy the technology that covers the largest total length that is still
uncovered.

(b) Candidate Greedy Strategy II: Look at all the technologies with l ≤ L. Of these, buy the one Ti = (li, hi)
with the largest value of hi. Repeat the process to cover the remaining interval, (hi, H).

16. (Easy) Given a weighted undirected graph G with distinct edge weights, you have to find an edge that is definitely
not in the minimum spanning tree. Design a O(m+n) algorithm to find such an edge. Prove that your algorithm
is correct.

17. (Easy) A server has n customers waiting to be served. The service time required by each customer is known in
advance: it is ti minutes for customer i. So if, for example, the customers are served in order of increasing i, then
the ith customer has to wait

i
j=1 tj minutes. We wish to minimize the total waiting time

T =

n

i=1

(time spent waiting by customer i)

Give an efficient algorithm for computing the optimal order in which to process the customers.

18. (Easy) Consider an undirected graph G = (V,E) with nonnegative edge weights we ≥ 0. Suppose that you have
computed a minimum spanning tree of G, and that you have also computed shortest paths to all nodes from a
particular node s ∈ V . Now suppose each edge weight is increased by 1 :the new weights are w′

e = we + 1.

(a) Does the minimum spanning tree change? Give an example where it changes or prove it cannot change.

(b) Do the shortest paths change? Give an example where they change or prove they cannot change.

19. (Easy) There are n events, each takes one unit of time. Each event i will provide a profit of gi dollars if it is
started at or before time ti, but will provide zero profit if it is not started by time ti (so there is no point in
scheduling event i unless it can be scheduled to start by time ti). Here, gi, ti ≥ 0 and ti may NOT be an integer.
An event can start as early as time 0 and no two events can be running simultaneously. The goal is to feasibly
schedule a subset of the events to maximize the total profit.

(a) Prove that there exists an optimal schedule OPT in which every event that is scheduled is scheduled to start
at an integral time. Note that in such a solution, each event i is either scheduled to start by time ⌊ti⌋ or not
scheduled at all.

(b) Design an efficient greedy algorithm which only schedules events at integral start times. [Hint: Let T =
maxi⌊ti⌋. Think about which event you would schedule to start at time T .]

(c) Prove that your algorithm always returns an optimal solution.

(d) Analyze the worst-case running time of your algorithm. Explicitly state the data structures that your
algorithm uses.

20. (Hard) Your mother has defined a set of n tasks. For each task i, there is a reward ri. The rewards are integers
and may take negative values. For example, if you clean the house, then the reward is positive. But if you watch
TV, then the reward is negative. You can choose any subset of these n tasks to maximize the total reward. Let
us assume that you choose k tasks.

In general, it is better to choose tasks with positive rewards and avoid negative rewards. However, your mother
knows that watching TV is not altogether a bad activity. So, here is the twist.

Suppose you choose to do k tasks out of n. If you do task 1 on day 1, then you will receive a reward of kr1.
Similarly, if you do task 2 on day 2, then your reward will be (k− 1)r2. Let us assume that you choose to do task

i on day i, then your total reward is

k

i=1

(k − i + 1)ri. With this condition, can you come up with an example

when even performing a task with negative reward is fine? Design an efficient algorithm that find the number of
task that you should perform to maximize the reward.
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