Problem Set 4: Union Find

- 1. (EASY) Show that the Union by Rank algorithm requires $O(m \log n)$ time for a sequence of m union and find operations.
- 2. (EASY) Consider the following Union-find algorithm. MAKESINGLETON(u) make a node u. FIND(u) returns the root of the tree containg u. UNION((u, v) finds the root of the tree containing u and v, say r_u and r_v . It then makes r_v the child of r_u . Show that there is a sequence of:
 - (a) n-1 union operations that take $\Omega(n^2)$ time.
 - (b) n-1 union operations that take O(n) time and n unique find operations that take $\Omega(n^2)$ time.
- 3. (EASY) You are given a list of n cities numbered from 1 to n. You need to define a function INSAMESTATE(i, j) with the following properties. INSAMESTATE(i, j) returns 1 if city i and j are in the same state. Else it returns 0.
 - (a) Design a data-structure of size $O(n^2)$ which will be used in writing the function INSAMESTATE(i, j). The running time of INSAMESTATE(i, j) should be O(1).
 - (b) Design a data-structure of size O(n) which will be used in writing INSAMESTATE(i, j). The running time of INSAMESTATE(i, j) should be O(1).

Write each and every detail of your data-structure. For this question, please do not use hashing.

4. (MEDIUM) Consider the following implementation of Union-Find algorithm. For each element u, we will store a pair (I_u, N_u) where I_u is the unique identifier of the tree containing u and N_u is the number of nodes in the tree containing u.

def MAKESINGLETON(u): $label(u) \leftarrow (u, 1)$

def FIND(u): return label(u)[0]

def UNION (u, v) :			
if $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$			
	;		
	;		
	;		
	;		

In the class, we performed a BFS from u and v to find the number of nodes in the tree of u and v. But here, we can find N_u and N_v using label(u) and label(v) respectively. Nevertheless, show that the running time of UNION(u, v) can still be O(n) in the worst case. Write a good implementation of UNION such that n - 1 union operations take $O(n \log n)$ time.

5. (MEDIUM) You are given a grid of size $n \times n$. Each cell in the grid is either white of black, that is grid(i, j) = 1 if cell (i, j) is white else it is 1. You want to find the largest connected component of the grid that contains only black cells.

- (a) Show how you will use union-find algorithm to solve this problem.
- (b) Using union-find algorithm may not be the best strategy to solve this problem. Design an algorithm (from scratch) that can solve this problem in $O(n^2)$ time.
- 6. (HARD) s In the offline minimum problem, you maintain a set of n numbers from 1 to n under the following m operations.
 - 1. Insert(i): Insert the number i in the set.
 - 2. Extract-Min(): Remove the minimum element from the set.

The two operations may appear in any order. Normally, you use a heap to solve the problem. But in our case, the problem is offline not online. In other words, the output of Extract-min() needs to be provided at the end of the *m* operations, not in an online fashion.

Show how you will use union-find data structure to solve this problem efficiently.