MA 201: Tutorial 2

1. Let $z=x+i y$. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though the Cauchy-Riemann equations are satisfied at that point.
2. Show that for the function $f(z)=u(x, y)+i v(x, y)$ given by

$$
f(z)= \begin{cases}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, & z \neq 0, \\ 0, & z=0\end{cases}
$$

the Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
3. Let $z=r(\cos \theta+i \sin \theta)$ and $f(z)=u(r, \theta)+i v(r, \theta)$. Derive the Cauchy-Riemann equations in the polar form given by

$$
u_{r}=\frac{1}{r} v_{\theta}, v_{r}=-\frac{1}{r} u_{\theta} \quad(r>0),
$$

using the Cauchy-Riemann equations in the Cartesian coordinates.
4. Let $\mathfrak{D}=\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$. Draw and explain the region where \mathfrak{D} gets mapped to in the w-plane by $w=e^{z}$. Explain where the vertical and horizontal lines in \mathfrak{D} get mapped.
5. Show that

$$
\begin{aligned}
& \text { Retan } z=\frac{\sin x \cos x}{\cos ^{2} x+\sinh ^{2} y}, \\
& \operatorname{Im} \tan z=\frac{\sinh y \cosh y}{\cos ^{2} x+\sinh ^{2} y} .
\end{aligned}
$$

6. Prove that $\operatorname{Im} \cos z$ and Re $\sin z$ are harmonic functions.
7. If $\omega=\phi+i \psi$ represents the complex potential for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$, determine ϕ.
