MA 201: Complex Analysis - Tutorial 4

1. Evaluate $\int_C |z| dz$, where C is the circle |z - 1| = 1 described in the counterclockwise direction.

2. Evaluate $\int_C f(z) dz$ by using the formula $\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0)$ and then compare the result by using the formula $\int_C f(z) dz = \int_a^b f(z(t))\dot{z}(t) dt$, where:

(a) $f(z) = z^4$ and C is the semi-circle |z| = 2 from -2i to 2i in the right half-plane.

- (b) $f(z) = e^{2z}$ and C is the shortest path from 0 to 1 + 2i.
- 3. Evaluate $\int_C \cot z \, dz$, where C is the circle $|z + \frac{1}{2}| = \frac{1}{3}$.