MA 201: Complex Analysis - Tutorial 4

1. Evaluate $\int_{C}|z| d z$, where C is the circle $|z-1|=1$ described in the counterclockwise direction.
2. Evaluate $\int_{C} f(z) d z$ by using the formula $\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)$ and then compare the result by using the formula $\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) \dot{z}(t) d t$, where:
(a) $f(z)=z^{4}$ and C is the semi-circle $|z|=2$ from $-2 i$ to $2 i$ in the right half-plane.
(b) $f(z)=e^{2 z}$ and C is the shortest path from 0 to $1+2 i$.
3. Evaluate $\int_{C} \cot z d z$, where C is the circle $\left|z+\frac{1}{2}\right|=\frac{1}{3}$.
