MA 201 - Tutorial set 1

1. Find and sketch the images of the angular region $0 \leq \arg z \leq \frac{\pi}{8}$ in the case of each of the following mappings:

$$
(i) w=\frac{1}{z}(i i) w=\frac{i}{z}(i i i) w=z^{-2}(i v)=i z^{-2}
$$

2. Find and sketch the images of the region $y>-1$ under the following mappings:
(i) $w=i z$ (ii) $w=(1+i) z$ (iii) $w=(1-i) z+2 i$ (iv) $w=i z^{2}$.
3. Let $\langle.,$.$\rangle denote the usual inner product in \mathbb{R}^{2}$. In other words, if $z=\left(x_{1}, y_{1}\right)$ and $w=\left(x_{2}, y_{2}\right)$, then

$$
\langle z, w\rangle=x_{1} x_{2}+y_{1} y_{2}
$$

Similarly, we may define a Hermitian inner product (., .) in \mathbb{C} by

$$
(z, w)=z \bar{w}
$$

The term Hermitian is used to describe the fact that (.,.) is not symmetric, but rather satisfies the relation

$$
(z, w)=\overline{(w, z)} \text { for all } z, w \in \mathbb{C} .
$$

Show that

$$
\langle z, w\rangle=\frac{1}{2}[(z, w)+(w, z)]=\operatorname{Re}(z, w)
$$

where we use the usual identification $z=x+i y \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^{2}$.
4. Describe geometrically the sets of points z in the complex plane defined by the following relations:
(a) $1 / z=\bar{z}$.
(b) $\operatorname{Re}(z)=3$.
(c) $\operatorname{Re}(z)>c$, where $c \in \mathbb{R}$.
5. Suppose that f is analytic in a domain D. Prove that in any one of the following cases:
(a) $\operatorname{Re}(f)$ is constant;
(b) $\operatorname{Im}(f)$ is constant;
(c) $|f|$ is constant;
one can conclude that f is constant.
6. Fix $n \geq 1$. Show that the $n^{\text {th }}$ roots of unity $\omega_{0}, \omega_{1}, \ldots . \omega_{n-1}$ satisfy
a) $\left(z-\omega_{0}\right) \ldots \ldots .\left(z-\omega_{n-1}\right)=z^{n}-1$.
b) $\omega_{0}+\omega_{1}+\ldots .+\omega_{n-1}=0$.
c)

$$
\sum_{j=0}^{n-1} \omega_{j}^{k}= \begin{cases}0 & 1 \leq k \leq n-1 \\ n & k=n\end{cases}
$$

7. Prove that

$$
1+\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots . .+\cos n \theta=\frac{\sin \left(\frac{1}{2}(n+1) \theta\right) \cdot \cos \left(\frac{n \theta}{2}\right)}{\sin \left(\frac{\theta}{2}\right)}
$$

8. Show that

$$
\begin{aligned}
\left|z_{1}+z_{2}\right| & \leq\left|z_{1}\right|+\left|z_{2}\right|, \quad \text { and } \\
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| & \leq\left|z_{1}-z_{2}\right| \quad \text { for all } z_{1}, z_{2} \in \mathbb{C} .
\end{aligned}
$$

9. Show that if $z \in \mathbb{C}$ lies on the circle $|z|=2$, then

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3} .
$$

10. Show that the only entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ of the form $f(x+i y)=u(x)+i v(y)$ is given by $f(z)=\lambda z+a$ for some $\lambda \in \mathbb{R}$ and $a \in \mathbb{C}$.
11. Show that if a limit of a function $f(z)$ exists at z_{0}, then it must be unique.
12. Prove that the existence of the derivative of a function at a point implies the continuity of the function at that point.
