MA 201-Tutorial set 3

Note: Throughout the tutorial set, $z=x+i y$.

1. Show that if $a<b$ and γ denotes the circle centered at a, traversed in the counterclockwise direction, and which has b in its exterior, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b},
$$

2. Evaluate

$$
\int_{\gamma} \frac{1}{z+1} d z
$$

where γ is any curve in $D=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, which joins $-1+i$ to $1+2 i$.
3. Show that
(a) the function $f(z)=\log (z-i)$ is analytic everywhere except on the portion $x \leq 0$ of the line $y=1$;
(b) the function

$$
f(z)=\frac{\log (z+4)}{z^{2}+i}
$$

is analytic everywhere except at the points $\pm \frac{(1-i)}{\sqrt{2}}$ and on the portion $x \leq-4$ of the real axis.
4. Find the principal branch cut of
(a) $\sqrt{1-z^{2}}$.
(b) $\log \left(z^{2}-1\right)$.
5. Evaluate $\int_{C}|z| d z$, where C is the circle $|z-1|=1$ described in the counterclockwise direction.
6. Compute

$$
\int_{|z|=1}|z-1| \cdot|d z| .
$$

