MA 502-Assignment 2 (Complex Analysis)

1. Show that if $f: G \rightarrow \mathbb{C}$ is analytic and γ is a rectifiable curve in G, then $f \circ \gamma$ is also a rectifiable curve. (First assume G is a disk.)
2. Let $P: \mathbb{C} \rightarrow \mathbb{R}$ be defined by $P(z)=\operatorname{Re}(z)$; show that P is an open map but is not a closed map. (Hint: Consider the set $F=\left\{z: \operatorname{Im}(z)=\frac{1}{\operatorname{Re}(z)}\right.$ and $\left.\operatorname{Re}(z) \neq 0\right\}$).
3. Let $\gamma(\theta)=\theta e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$ and $\gamma(\theta)=4 \pi-\theta$ for $2 \pi \leq \theta \leq 4 \pi$. Evaluate $\int_{\gamma} \frac{d z}{z^{2}+\pi^{2}}$.
4. Evaluate $\int_{\gamma} \frac{e^{z}-e^{-z}}{z^{4}} d z$ where γ is one of the curves depicted below. (Justify your answer.)

5. Let X and Ω be metric spaces and suppose that $f: X \rightarrow \Omega$ is one-one and onto. Show that f is an open map iff f is a closed map. (A function f is a closed map if it takes closed sets onto closed sets.)
6. Let $G=\mathbb{C}-\{a, b\}, a \neq b$, and let γ be the curve in the figure below.

(a) Show that $n(\gamma ; a)=n(\gamma ; b)=0$.
(b) Convince (not prove) yourself that γ is not homotopic to zero. Note that this example shows that it is possible to have a closed curve γ in a region such that $n(\gamma ; z)=0$ for all z not in G without γ being homotopic to zero.
