MA 502 - Assignment 2 (Complex Analysis)

1. Show that if $f: G \to \mathbb{C}$ is analytic and γ is a rectifiable curve in G, then $f \circ \gamma$ is also a rectifiable curve. (First assume G is a disk.)

2. Let $P : \mathbb{C} \to \mathbb{R}$ be defined by $P(z) = \operatorname{Re}(z)$; show that P is an open map but is not a closed map. (Hint: Consider the set $F = \{z : \operatorname{Im}(z) = \frac{1}{\operatorname{Re}(z)} \text{ and } \operatorname{Re}(z) \neq 0\}$).

- 3. Let $\gamma(\theta) = \theta e^{i\theta}$ for $0 \le \theta \le 2\pi$ and $\gamma(\theta) = 4\pi \theta$ for $2\pi \le \theta \le 4\pi$. Evaluate $\int_{\gamma} \frac{dz}{z^2 + \pi^2}$.
- 4. Evaluate $\int_{\gamma} \frac{e^z e^{-z}}{z^4} dz$ where γ is one of the curves depicted below. (Justify your answer.)

5. Let X and Ω be metric spaces and suppose that $f: X \to \Omega$ is one-one and onto. Show that f is an open map iff f is a closed map. (A function f is a closed map if it takes closed sets onto closed sets.)

6. Let $G = \mathbb{C} - \{a, b\}, a \neq b$, and let γ be the curve in the figure below.

(a) Show that $n(\gamma; a) = n(\gamma; b) = 0$.

(b) Convince (not prove) yourself that γ is not homotopic to zero. Note that this example shows that it is possible to have a closed curve γ in a region such that $n(\gamma; z) = 0$ for all z not in G without γ being homotopic to zero.