MA 502 - Tutorial 10 (Complex Analysis)

1. Let G be open and suppose γ is a closed rectifiable curve in G. Let $r=d(\{\gamma\}, \partial G)>0$.
(a) Show that $\{z: d(z, \partial G)<r / 2\}$ is contained in the unbounded component of $\mathbb{C}-\{\gamma\}$.
(b) Use part (a) to show that if $f: G \rightarrow \mathbb{C}$ is analytic, then $f(z)=\alpha$ has at most a finite number of solutions z with $n(\gamma ; z) \neq 0$.
2. Let f be analytic in $B(a ; R)$ and suppose that $f(a)=0$. Show that a is a zero of multiplicity m iff $f^{(m-1)}(a)=\cdots=f(a)=0$ and $f^{(m)}(a) \neq 0$.
3. Suppose that $f: G \rightarrow \mathbb{C}$ is analytic and one-one; show that $f^{\prime}(z) \neq 0$ for any z in G.
4. We have proved the following theorem in the class:

Let G be a region and let f be an analytic function on G with zeros $a_{1} \ldots, a_{m}$ (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_{k} and if $\gamma \sim 0$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right) .
$$

Use this theorem to give another proof of the Fundamental Theorem of Algebra.

