MA 502 - Tutorial 11 (Complex Analysis)

1. Let $p(z)$ be a polynomial of degree n and let $R>0$ be sufficiently large so that p never vanishes in $\{z:|z|>R\}$. If $\gamma(t)=R e^{i t}, 0 \leq t \leq 2 \pi$, show that $\int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi i n$.

Hint: You may make use of the fact that if $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, then as $|z| \rightarrow \infty$, for any $\epsilon>0$,

$$
(1-\epsilon)\left|a_{n}\right||z|^{n} \leq|p(z)| \leq(1+\epsilon)\left|a_{n}\right||z|^{n} .
$$

2. Each of the following functions f has an isolated singularity at $z=0$. Determine its nature; if it is a removable singularity define $f(0)$ so that f is analytic at $z=0$; if it is a pole find the singular part; if it is an essential singularity, say why.
(a) $f(z)=\frac{\sin (z)}{z}$
(b) $f(z)=\frac{\cos (z)}{z}$
(c) $f(z)=\frac{\cos (z)-1}{z}$
(d) $f(z)=\frac{\log (z+1)}{z^{2}}$
(e) $f(z)=z^{n} \sin \left(\frac{1}{z}\right)$.
3. Find the Laurent series expansion of $f(z)=\frac{8+z^{2}}{z^{3}-z^{2}-2 z}$ on:
(a) $\operatorname{ann}(0 ; 1,2)$
(b) $\operatorname{ann}(1 ; 0,1)$
(c) $\operatorname{ann}(1 ; 1,2)$
(d) $\operatorname{ann}(i ; \sqrt{2}, \sqrt{5})$
(e) $\operatorname{ann}(i ; \sqrt{5}, \infty)$.
4. Determine the order of the pole at $z=0$ of the following functions:
(a) $f(z)=\frac{z^{3} \sin \left(2 z^{3}\right)}{\cos \left(z^{4}\right)-1}$
(b) $f(z)=\frac{(z \sin (z))^{3}}{\left(1-\cos \left(z^{2}\right)\right)^{2}}$.
