MA 502 - Tutorial 12 (Complex Analysis)

1. Evaluate the following integrals:
(a) $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x$
(b) $\int_{0}^{\pi} \frac{\cos (2 \theta) d \theta}{1-2 a \cos (\theta)+a^{2}}$, where $a^{2}<1$.
2. Suppose $f(z)=g(z) / h(z)$, where g and h are analytic in a neighborhood of $a, g(a) \neq 0$ and $h(z)$ has a simple zero at $z=a$. Then prove that

$$
\operatorname{Res}(f ; a)=\frac{g(a)}{h^{\prime}(a)}
$$

3. Suppose that f has an essential singularity theorem at $z=a$. Prove the following strengthened version of the Casorati-Weierstrass theorem:

If $c \in \mathbb{C}$ and $\epsilon>0$ are given, then for each $\delta>0$, there is a number α, with $|c-\alpha|<\epsilon$, such that $f(z)=\alpha$ has infinitely many solutions in $B(a ; \delta)$.
(Hint: (a) You may assume the Baire category theorem, namely, in a complete metric space, if $\left\{U_{n}\right\}_{n=1}^{\infty}$ is a collection of open dense sets in X, then $\cap_{n=1}^{\infty} U_{n}$ is dense in X.
(b) You can also assume the fact that if A is a set dense in X, then A intersects every non-empty open set in X.)
4. Let γ be the rectangular path $\left[n+\frac{1}{2}+n i,-n-\frac{1}{2}+n i,-n-\frac{1}{2}-n i, n+\frac{1}{2}-n i, n+\right.$ $\left.\frac{1}{2}+n i\right]$ and evaluate the integral $\int_{\gamma} \frac{\pi \cot (\pi z)}{(z+a)^{2}} d z$ for a not equal to an integer. Show that $\lim _{n \rightarrow \infty} \int_{\gamma} \frac{\pi \cot (\pi z)}{(z+a)^{2}} d z=0$ and, by using the first part, deduce that

$$
\frac{\pi^{2}}{\sin ^{2}(\pi a)}=\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}
$$

(Hint: Use the fact that for $z=x+i y,|\cos (z)|^{2}=\cos ^{2}(x)+\sinh ^{2}(y)$ and $|\sin (z)|^{2}=$ $\sin ^{2}(x)+\sinh ^{2}(y)$ to show that $|\cot (\pi z)| \leq 2$ for z on γ if n is sufficiently large.)

