MA 502 - Tutorial 13 (Complex Analysis)

- 1. Prove that all four roots of $p(z) = z^4 + z 7$ lie in ann(0; 1, 2).
- 2. Prove that $\alpha z e^z = 1$ has exactly one root in B(0;1) for $|\alpha| > e$.

3. If A is a set dense in X, then A intersects every non-empty open set in X.

4. Suppose f is analytic on $\overline{B}(0;1)$ and satisfies |f(z)| < 1 for |z| = 1. Find the number of solutions (counting multiplicities) of the equation $f(z) = z^n$ where n is an integer larger than or equal to 1.

5. Suppose that f is a meromorphic function on G. Define $f : G \to \mathbb{C}_{\infty}$ by setting $f(z) = \infty$ whenever z is a pole of f. Prove that f is continuous from G into \mathbb{C}_{∞} .