MA 502 - Tutorial 13 (Complex Analysis)

1. Prove that all four roots of $p(z)=z^{4}+z-7$ lie in ann $(0 ; 1,2)$.
2. Prove that $\alpha z e^{z}=1$ has exactly one root in $B(0 ; 1)$ for $|\alpha|>e$.
3. If A is a set dense in X, then A intersects every non-empty open set in X.
4. Suppose f is analytic on $\bar{B}(0 ; 1)$ and satisfies $|f(z)|<1$ for $|z|=1$. Find the number of solutions (counting multiplicities) of the equation $f(z)=z^{n}$ where n is an integer larger than or equal to 1 .
5. Suppose that f is a meromorphic function on G. Define $f: G \rightarrow \mathbb{C}_{\infty}$ by setting $f(z)=\infty$ whenever z is a pole of f. Prove that f is continuous from G into \mathbb{C}_{∞}.
