MA 502 - Tutorial 8 (Complex Analysis)

1. Let G be a region and suppose that $f : G \to \mathbb{C}$ is analytic and $a \in G$ such that $|f(a)| \leq |f(z)|$ for all z in G. Show that either f(a) = 0 or f is constant.

2. If f is a non-constant analytic function on a bounded open set G and is continuous on \overline{G} , then show that either f has a zero in G or |f| assumes its minimum value on ∂G .

3. Let G be a bounded region and suppose f is continuous on \overline{G} and analytic on G. Show that if there is a constant $c \ge 0$ such that |f(z)| = c for all z on the boundary of G, then either f is a constant function or f has a zero in G.

4. Suppose that both f and g are analytic on $\overline{B}(0; R)$ with |f(z)| = |g(z)| for |z| = R. Show that if neither f nor g vanishes in B(0; R) then there is a constant λ , $|\lambda| = 1$, such that $f = \lambda g$.

5. Let f be analytic in the disk B(0; R) and for $0 \le r < R$ define $A(r) = \max\{\operatorname{Re}(f(z)) : |z| = r\}$. Show that unless f is constant, A(r) is a strictly increasing function of r.