MA-509: HOMEWORK 1 (DUE SEPTEMBER 18)

1. Fix $b>1, y>0$, and prove that there is a unique real x such that $b^{x}=y$, by completing the following outline. (This x is called the logarithm of y to the base b.)
(a) For any positive integer $n, b^{n}-1 \geq n(b-1)$.
(b) Hence $b-1 \geq n\left(b^{1 / n}-1\right)$.
(c) If $t>1$ and $n>(b-1) /(t-1)$, then $b^{1 / n}<t$.
(d) If w is such that $b^{w}<y$, then $b^{w+1 / n}<y$ for sufficiently large n; to see this apply part (c) with $t=y b^{-w}$.
(e) If $b^{w}>y$, then $b^{w-1 / n}>y$ for sufficiently large n.
(f) Let A be the set of all w such that $b^{w}<y$, and show that $x=\sup (A)$ satisfies $b^{x}=y$.
(g) Prove that this x is unique.
2. Let $A_{1}, A_{2}, A_{3}, \cdots$ be subsets of a metric space.
(a) If $B_{n}=\cup_{i=1}^{n} A_{i}$, prove that $\overline{B_{n}}=\cup_{i=1}^{n} \overline{A_{i}}$, for $n=1,2,3, \ldots$
(b) If $B=\cup_{i=1}^{\infty} A_{i}$, prove that $\cup_{i=1}^{\infty} \overline{A_{i}} \subset \bar{B}$. Also show by means of an example, that this inclusion can be proper.
3. Construct a bounded set of real numbers with exactly three limit points.
