MA-509: HOMEWORK 2 (DUE NOVEMBER 20)

1. Prove that there is no value of k such that $x^{3}-3 x+k=0$ has 2 distinct roots in the closed interval $[0,1]$.
2. Every rational x can be written in the form $x=m / n$, where $n>0$, and m and n are integers without any common divisors. When $x=0$, we take $n=1$. Consider the function f defined on \mathbb{R} by

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x \text { is irrational, } \\
1 / n, \text { if } x \text { is } m / n
\end{array}\right.
$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.
3. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that $f(E)$ is dense in $f(X)$. If $g(p)=f(p)$ for all $p \in E$, prove that $g(p)=f(p)$ for all $p \in X$. (In other words, a continuous mapping is determined by its values on a dense subset of its domain.)

