8/9/2020

MA 509 - REAL ANALYSIS - LECTURE 1
Some more definitions
Let X be a metric space.
(a) A neighborhood of p is
Nr(p) = {q: d(p,q) <r for="" r="" some="">0} Gradius</r>
(b) Limit point p of a set ECX : is a point if <u>every</u> neighborhood of p contains a point q ≠ p such that q ∈ E. (Also called an <u>accumulation point</u>)
(c) If pEE and p is not a limit point of E, then p is called an isolated point of E.
(d) E is closed if every limit point of E is a point of E. Examples:

- (e) A point p is an <u>interior point</u> of E if there is a neighborhood N of p s.t. NCE.
- (f) E is open if every point of E is an interior point of E.
- (g) Complement of E, denoted by E^C is E^C = {x ∈ X : x ∉ E }.
- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if 7 MeiR & q∈X → d(p,q) < M ¥ p∈ E.
- (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).

Theorem 2.8 Every neighborhood is an open set: Proof: Let $E = N_{q}(p)$ be a norm of p and $q \in E \ni q \neq q$. F h $\in \mathbb{R}^{+} \Rightarrow d(p,q) = \forall -h$ Now if s is any point $s \cdot t \cdot d(q, g) < h$, then $d(p,g) \leq d(p,q) + d(q,g) < \forall -h + h = \forall$. $\Rightarrow s \in E$. Thus, q is an interior point of E.