MA 509 - REAL ANALYSIS LEC• 14
LAST TIME:
The. 2.15 If X is a metric space and $E \subset X$, then (a) E is closed.
(b) $E=\bar{E}$ iff E is closed
(c) ECF for every closed set FCX \rightarrow ELF.

Remark: \bar{E} is the smallest closed subset of X that contains .

The. 2.16 Let E be a non-empby set of real numbers which is bounded above. Let $y=\sup (E)$. Then $y \in E$. Hence $y \in E$ if E is closed.

Proof: If $y \in E$, then clearly $y \in \bar{E}$.
If $y \notin E$, then y is a limit point of E is what we want to show.

Since $y=\sup (E), \exists x \in E \geqslant y-h<x<y$ for $h>0$, otherwise $y-h$ would be an upper bound of E. But then y must be the limit point of
$E . \Rightarrow y \in E^{\prime} \subset E$.
Hence in both the cases, we have $y \in E$.

* Let $E=(a, b), Y=\mathbb{R}^{\prime}, x=\mathbb{R}^{2}$.

Then E is open in \mathbb{R}^{\prime} but not in \mathbb{R}^{2}. In general, let ECYCX, where X is a metric space.

E open in X implies if $p \in E, \exists r>0 \Rightarrow d(p, q)<r, q \in X$ $q \in E$.
E is open relative to Y if for $p \in E, \exists r>0 \rightarrow d(p, q)<r, q \in Y$ $q \in E$.

Thm.2.17 Suppose $Y \subset X$. A subset E of Y is open relative to Y iff $E=Y \cap \cap$ for some open subset G of X.
Proof: " \Rightarrow "Suppose E is open relative to Y. Let $p \in E$. $F \gamma_{p}>0 \ni d(p, q)<\gamma_{p}, q \in Y \Rightarrow q \in E$. (1)
Let $V_{p}=\left\{q \in x: d(p, q)<r_{p}\right\}$. - (2) Let $G=\bigcup_{P \in E} V_{P}$. Obviously, G is open in X.
Note that $p \in V_{p} \forall p \in E$. Thus $E \subset \underset{p \in E}{\bigcup} V_{p}=G$
Since we are given ECY, we have

$$
\begin{equation*}
E \subset G \cap Y \tag{3}
\end{equation*}
$$

Note that from (1) and (2) $V_{p} \cap Y C E \forall P \in E$ $\Rightarrow \quad \bigcup_{P \in E}\left(V_{P} \cap Y\right) \subset E$
Bub $\left.\underset{P \in E}{ } \bigcup_{P} \cap Y\right)=\left(\bigcup_{P \in E} V_{P}\right) \cap Y=G \cap Y$.

$$
\begin{equation*}
\Rightarrow G \cap Y \subset E \tag{4}
\end{equation*}
$$

From (3) and (4), we conclude $E=G \cap Y$.
"1" Let G is open in X and $E=G \cap Y$.
Then by the defn. of an open set, for each $p \in E, \mathcal{H}$ neal V_{p} $\rightarrow V_{p} \subset G$

$$
\begin{aligned}
& \Rightarrow V_{P} \cap Y \subset G \cap Y \\
& \Rightarrow V_{P} \cap Y \subset E
\end{aligned}
$$

\Rightarrow for each $p \in E, \exists \gamma_{p}>0 \Rightarrow d(p, q)<\gamma_{p}$, $q \in Y \Rightarrow q \in E$.
$\Rightarrow E$ is open relative to Y.
COMPACT SETS
Defn. Open cover: An open cover of a set E in a metric space X is a collection $\left\{G_{\alpha}\right\}$ of open subsets of $X \mathcal{F} E \cup_{\alpha} G_{\alpha}$.

Defn. A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

Eg. A finite set is always compact.
Suppose $K C U_{\alpha} G_{\alpha}$
Than K will be compact if 7 $\frac{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} r}{n} \bigcup_{i=1}^{n} G_{\alpha_{i}}$

