MA 509-REAL ANALYSIS-LECT. 17
Thm.2.24 If $\left\{I_{n}\right\}$ is a sequence of closed intervals in \mathbb{R}^{\prime} et. In $\supset I_{n+1}, n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} I_{n} \neq \phi$.

Proof: Let $I_{n}=\left[a_{n}, b_{n}\right], n \in \mathbb{N}$.
Let $E:=\left\{a_{n}: a_{n}\right.$ is the left end-point of $\operatorname{In}\}$.
Then E is non-empty and bounded above by b_{1} (why?)
So sup (E) exists in \mathbb{R}, say, x.
Let $m, n \in \mathbb{N}$. Then

$$
a_{n} \leqslant a_{m+n} \leqslant b_{m+n} \leqslant b_{n}
$$

$\Rightarrow x \leqslant b m \quad \forall m \in \mathbb{N}$, for otherwise, $x \neq \sup (E)$ (Explain why?)

Since $a_{m} \leqslant x \forall m \in \mathbb{N}$, we have $x \in I_{m} \forall m \in \mathbb{N}$

$$
\Rightarrow \bigcap_{n=1}^{\infty} I_{n} f \phi .
$$

The. $2 \cdot 25$ Let $k \in \mathbb{N}$. If $\left\{I_{n}\right\}$ is a sequence of $k-c e l l s$ such that $I_{n} \supset I_{n+1}(n \in \mathbb{N})$, then

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \phi .
$$

Proof: Note that for every $n \in \mathbb{N}$,

$$
\begin{aligned}
& I_{n}=\left\{\bar{x}=\left(x_{1}, \ldots, x_{k}\right): a_{n, j} \leqslant x_{j} \leqslant b_{n, j}, 1 \leqslant j \leqslant k\right\} \\
& 1-c e \| 1: a[a b \\
& 2-c e l \mid:[a, b] \times[c, d]
\end{aligned}
$$

Note that
Let $I_{n, j}:=\left[a_{n, j}, b_{n, j}\right] \quad \begin{aligned} & I_{1, j} \supset I_{B, j} \supset I_{3, j} \supset \ldots \ldots \\ & I_{1,2} \supset I_{2,2} \supset I_{3,2} \supset \ldots\end{aligned}$
Note that $I_{n, j}$ satisfies the hypotheses of The. 2.24 for each j. Hence 7 real numbers $x_{j}^{*}, 1 \leq j \leq k, s \cdot t$.

$$
a_{n, j} \leq x_{j}^{*} \leq b_{n, j} \quad 1 \leq j \leq k, n \in \mathbb{N}
$$

Now let $\bar{x}^{*}=\left(x_{1}{ }^{*}, \cdots, x_{k}^{*}\right)$.
Then $\bar{x}^{*} \in I_{n} \forall n G \mathbb{N}$. Hence $\bigcap_{n=1}^{\infty} I_{n} \neq \phi$.
Thm.2.26 Every k-cell is compact.
Proof: Let I be a $k-c e l l$. Then

$$
I=\left\{\bar{x}=\left(x_{1}, \ldots, x_{k}\right): a_{j} \leqslant x_{j} \leqslant b_{j}, 1 \leqslant j \leqslant k\right\} \text {. }
$$

Let $\delta=\sqrt{\sum_{j=1}^{k}\left(b_{j}-a_{j}\right)^{2}}$.
Then if $\bar{x} \in I, \bar{y} \in I$, then $|\bar{x}-\bar{y}| \leqslant \delta$. (Why?) If $\bar{x}=\left(x_{1}, \ldots, x_{k}\right) \&{ }^{\prime} \bar{y}=\left(y_{1}, \ldots, y_{k}\right)$, then

$$
|\bar{x}-\bar{y}|=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots+\left(y_{k}-x_{1}\right)^{2}} \leqslant \sqrt{\sum_{j=1}^{1}\left(b_{j}-a_{j}\right)^{2}}=\delta
$$

Suppose, by means of contradiction, 7 an open cover $\left\{G_{\alpha}\right\}$ of I having no finite subcover for I.
Let $c_{j}=\left(a_{j}+b_{j}\right) / 2$. Then the intervals $\left[a_{j}, c_{j}\right] \&$ $\left[c_{j}, b_{j}\right] d^{j}$ ctermine $2^{k} k$-cells Q_{i}, whose union is I.

Then at least one of these sets G_{i}, say I_{1}, cannot be covered by any finite sub-collection of ' $\left\{G_{\alpha}\right\}$ (otherwise, I could also be covered).

Now consider I, and subdivide it in a similar way, and continue this process indefinitely.

Thus we get a sequence $\{\operatorname{In}\}$ of k-cells with the following properties: -
(i) $I \supset I_{1} \supset I_{2} \supset \ldots$
(ii) $\left\{G_{\alpha}\right\}$ does not have a finite subcover which covers I_{n}.
(iii) If $\bar{x} \in I_{n} \& \bar{y} \in I_{n}$, then $|\bar{x}-\bar{y}| \leqslant 2^{-n} \delta$
(This is because, consider I_{1}. We want to show) $|\bar{x}-\bar{y}| \leq \delta / 2$. Now $|\bar{x}-\bar{y}|=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots\left(y_{k}-x_{k}\right)^{2}}$

$$
=\frac{1}{2} \sqrt{\left(b_{1}-a_{1}\right)^{2}+\ldots+\left(b_{k}-a_{k}\right)^{2}}=\sqrt{\left(\frac{b_{1}-a_{1}}{2}\right)^{2}+\left(\frac{b_{2}-a_{2}}{2}\right)^{2}+\ldots\left(\frac{b_{k}-a_{k}}{2}\right)^{2}}
$$

By (i) and Thm.2.25, F $\bar{x}^{*} \geqslant \bar{x}^{*} \in I_{n} \forall n \in \mathbb{N}$.
Let $x^{*} \in G_{\alpha}$ for some α.

$$
\exists \gamma>0 \text { ₹ }\left|\bar{y}-x^{*}\right|<\gamma \Rightarrow y \in G \alpha
$$

Choose n so large that $2^{-n} \delta<\gamma$.

$$
\Rightarrow\left|\bar{x}^{*}-\bar{y}\right|<2^{-n \delta}<\gamma \Rightarrow \bar{y} \in G_{\alpha}
$$

Then $I_{n} \subset G_{\alpha} \rightarrow<$ since In did not have a finite subcover.
\Rightarrow Every k-cell is compact.

