MA 509- REAL ANALYSIS -LECT. 20
CANTOR SET - An example of a perfect set in \mathbb{R} with no open interval in it.

- Let $E_{0}=[0,1]$.
- Remove $\left(\frac{1}{3}, \frac{2}{3}\right)$ \& let

$$
E_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] .
$$

- Remove middle-thirds
of each of these intervals
\& let

$$
\begin{aligned}
E_{2}= & {\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{3}{9}\right] \cup\left[\frac{6}{9}, \frac{7}{9}\right] } \\
& \cup\left[\frac{8}{9}, 1\right] .
\end{aligned}
$$

Continue this process indefinitely to get a seq. of compact sets E_{n} (since closed \& bounded) \rightarrow
(a) $E_{1} \supset E_{2} \supset E_{3} \supset \ldots$
(b) E_{n} is the union of 2^{n} intervals, each of length 3^{-n}.

Then note that by Cor. 2.22 , we see that $p=\bigcap_{n=1}^{\infty} E_{n} \neq \phi$.

This P is called the Cantor set.

Properties of Cantor set
(1) Clearly, $\bigcap_{n=1}^{\infty} E_{n}$ is closed \& bounded, hence compact.
(2) No segment of the form $\left(\frac{3 k+1}{3^{m}}, \frac{3 k+2}{3^{m}}\right)$, for $m \in \mathbb{N}, k \in \mathbb{N} \cup\{0\}$, has a non-empty intersection with P.

Now every open interval (α, β) has an open interval of the form $\left(\frac{3 k+1}{3^{m}}, \frac{3 k+2}{3^{m}}\right)$ inside it, say, if we choose $3^{-m}<\frac{\beta-\alpha}{6}$, we conclude that P contains no open interval (however small size it has)
(3) P is perfect.

Proof: Suffices to show that P does not contain any isolated point.

Let $x \in P$ and let S be any open interval of \mathbb{R} containing x.
Let I_{n} be that closed interval of E_{n} which contains x. Choose R large enough so that $I_{n} C S$.

Let x_{n} be an endpoint of In $\mathcal{I} x_{n} \neq x$. Then by construction of the Cantor set P_{2} we have $x_{n} \in P$.

But s was any ibid of x. Thus every ibid of x intersects P in a point other than x.
$\Rightarrow x$ is a limit point of P.
$\Rightarrow P$ is Perfect.
(4) P is uncountable (by Thm.2.29)
(5) P has measure zero.

Explanation:(Heuristic)
The total length removed from $[0,1]$ while constructing the Cantor set is given by

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 2^{n} 3^{-n-1} \text { length of each such interval of } E_{n} \\
& =\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{1}{3} \frac{1}{1-2 / 3}=1 .
\end{aligned}
$$

Hence the Cantor set has measure zero!
(6) P is nowhere dense (its closure has empty interior.

Riemann Hypothesis
$\zeta(s)$ Riemann zeta fun.

$$
0<\operatorname{Re}(s)<1
$$

G.H. Hardy

$$
(1914)
$$

infinitely many complex of (s) h^{\wedge}
Antre
Selberg
Riemann (185q)
Newman more than, $\frac{1}{3}$ of complex h zeros h are $\operatorname{Re}(s)=\frac{1}{2}$.
40.26%
41.

