29/9,2020

MA 509- REAL ANALYSTS-LECT. 21

CONNECTED SETS

Defn. Two subsets A and B of a metric space X are said to be <u>separated</u> if both ANB and ANB are empty.

A set ECX is connected if E is NOT a union of 2 non-empty separated sets.

Separated sets \longrightarrow disjoint $F \cup [0,1] \cup (1,2)$ $f \longrightarrow (1,2)$ Eq. [0,1] and (1,2) are disjoint but not separated, since [0,1] $\cap (1,2) = \{1\} \neq \phi$.

But (0,1) and (1,2) are separated.

Q: How do connected subsets of real line look Thm, 2,30 A subset E of R is connected iff it has the following property: IF DIGE, YEE and X<Z<Y, then ZEE.

"
 (by contrapositivity)
Proof: Suppose
$$\exists x, y \in E$$
 and $z \in (x, y)$
s.t. $z \notin E$, then
 $E = A_z \cup B_z$, where $A_z = E \cap (-\infty, z)$
 $A_{z} = E \cap (2, \infty)$.
 Now $x \in A_z$ and $y \in B_z$, so $A_z \neq \phi$, $B_z \neq \phi$.
 Note that $(-\infty, z) \cap (2, \infty) = \phi$
 $A_z \in (-\infty, z) \cap (2, \infty) = \phi$
 $A_z \in (-\infty, z) \downarrow B_z \in (2, \infty)$, they are separated. Hence E is not connected.
 "
 "
 " (by contrapositivity)
 Suppose E is not connected. Then \exists non-empty separated sets $A \perp B \Rightarrow E = A \cup B$.
 Let $x \in A \downarrow y \in B \downarrow w \cdot l \cdot g \cdot [ct - x < y]$.
 Define $z = Sup(A \cap Ex, y]$.
 Then $z \in A \cap Ex, y] \subset \overline{A}$.
 Thm: $l = (let \leq 14)$
 Since $\overline{A} \cap B = \phi$, $\overline{z} \notin B$.
 (1)
 $\Rightarrow x \leq z < y$

Casel: ZGA Then along with (1), we have ZEAUB=E. \leftarrow to the given hypothesis. Case 2: ZEA Then ANB=\$ => z & B Thus Z & B' in particular. => 7 a nobal of z which has empty intersection Z, FYEB with B, i.e., J B, D Z<ZI<Y and ZI&B. =) メミモイモイイ (3) Now Zi & A, for, otherwise, it contradicts the fact that z = sup(An [x,y]) $\Rightarrow From (2 \notin 3), F = 2, \Rightarrow x < z_1 < y & s \cdot f \cdot \\ = 2, \notin E \cdot - + C = to the given hypothesis.$ \square

Chapter 3 - Numerical sequences & series Convergent sequences Def. A sequence {pn} in a metric space X is said to converge if 7 ps X > for every 270, JNGIN > n7, N implies d(pn, p)<2. Then we say 2 pn3 converges to p, or p is a limit point of 2 pn3. We say pr -> p or lim pr = p. If Ipn? does not converge, we say it diverges. <u>Aemark</u>: Not only does it matter whether <u>Ipnj</u> converges or not, but also where, i.e., in which metric space it converges matters too. too. $e \cdot q \cdot \hat{D} \left\{ \frac{1}{\sqrt{n}} \right\} \rightarrow 0$ in \mathbb{R} but not in \mathbb{R}^{\dagger} $\widehat{\mathbb{Z}} \left\{ \frac{1}{\sqrt{n}} : n \in \mathbb{N}, \# m \in \mathbb{N} \right\} = n \xrightarrow{2}$ -> 0 in R but not in IR\Q. · Range of {Pn} : All points Pn, nGIN, · {pn} is said to be bounded if its range is bounded,

Let the metric space X be R. Range Bounded? convergent? Infinite bdd : Yes (a) $s_n = \frac{1}{n}$ infinite unbdd $b S_n = n^2$ No $C S_n = 1 + (-1)^n$ infinite bdd Yes a sn=in finite bdd No Yes @ sn=1 the IN finite bdd