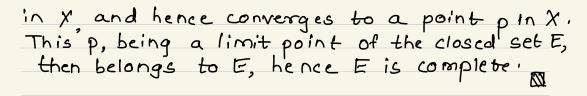
9/10/20

MA 509- REAL ANALYSIS-LECT. 24 Thm. B.G Let X be a metric space. Then a diam (E) = diam(E) b If Kn is a seq: of compact sets in X 3-Kn 2 Kn+1, neiN, and if lim diam Kn = 0, n+00 then MKn consists of a single point. Proof: (a) Done last time. (b) Let $K = \bigcap_{n=1}^{\infty} K_n$. Then K is non-empty, by Cor. 2:22. If k consists of more than one point, diam(K) >0. But Kn DK Unein, so diam(Kn), diam(K) Hnen. This contradicts the hypothesis that $diam(Kn) \rightarrow 0$. diam(Kn)→0, Thm. 3.7 a) In a metric space X, every Convergent seq: is Cauchy. (b) If X is a compact metric space, and if ipn } is a Cauchy sequence in X then ipn } converges to some point of X. C) In RK, every Cauchy sequence converges

Proof: ⓐ If
$$p_n \rightarrow p$$
, given an $2 > 0, 7$ Nervi
> $\gamma = n > N$, $d(p_n, p) < 2/2$
Then $\forall = m, n > N$,
 $d(p_n, p_m) \leq d(p_n, p) + d(p_m, p)$
 $\leq \frac{e}{2} + \frac{e}{2}$
 $\Rightarrow \qquad 2p_n r is Cauchy sequence in the compact-
metric space χ . For NGN, let
EN = $\{P_N, P_{N+1}, P_{N+2}, \dots, \}$.
Then by defn. of diameter of a set, and part ⓐ
of the previous theorem, we have
 $\lim_{n \to \infty} diam(E_N) = 0$. (i)
N→∞
Each E_N is closed subset of the compact-
Gace χ , hence compact. (ii)
Also $E_N \supset E_{N+1}$, so that $E_N \supset E_{N+1}$ (iii)
From (i), (ii) \mathcal{A} (iii), $\bigcap_{n \in I} E_n$ is a singleton set; let
 $P \in E_N \forall N \in N$.
Let $2 > 0$ be given. From (i), $7 = N_0 \in N \Rightarrow$
diam(E_N) < ξ for $N > N_0$.
Since $p \in E_N$, $d(p,q) < \xi$ for every $q \in E_N$,$

and hence for every QEEN. Thus, d(p,pn)< & for n>, No. => {pn}->p. \boxtimes ELet EPn3 be a Cauchy sequence in R^k. Suppose EN= 2 PN PN+1, PN+2 for NEN. Since { pn } is Cauchy, diam EN -> 0 cg N-> 0. Hence J N > diam (EN) < 1. The range of {Pn} is ENU {P1, P2, ..., PN-1}. ⇒ {Pn} is bounded. d(P1, P2, ..., PN-1}. So can take, say, 2 man {1, d(P1, P2).... d (PN-1, PN-2), d(P1, PN)), upper Since every bounded set of IR has compare closure in IRK, © now follows from (b). COMPLETE METRIC SPACE A metnic space is said to be <u>complete</u> if every Cauchy sequence in it converges. e.g. All compact metric spaces, R^k are Complete. Remark Every closed subset of a complete metric space is complete. Proof: Let & pnz be a Cauchy sequence in the closed subset E of X. Thus it's a Cauchy seq.



· example of a metric space which is nobcomplete: (Q,d) with d(xy) = 1x-y].