19/10/2020

MONOTONIC SEQUENCES

Defn. A seq. 25n3 of real numbers is said to be a monotonically increasing if sn ≤ sn+1 (n ∈ IN) b monotonically decreasing if SN 7, Sn+1 (n ∈ IN).

Thm 3.7 If {sn} is monotonic, then {sn} converges iff it is bounded.

Proof: We prove the above assertion for monob. incr. seq. The one for decreasing seq. is analogous. Suppose Sn S Shi, Y NGIN. Let E be the range of fsnz. If {Snzis bounded, let S be the least upper bound of E Then Sn ES (NEN) For every E>D, ZNGIN D S-2<SN SS, otherwise s-2 would be an upper bound of E-Sime {Snj is increasing, for NZN, S-E<Sn SS So fsnj s.

Convergence => bounded is already done. A

UPPER AND LOWER LIMITS

Let {Sn} be a sequence in R siti for every real M, FNEN > n>N implies Sn>, M. Then we say Sn -> + 0°.

Similarly, if for every real M, 7 NEINZ NZN
implies
$$S_n \leq M$$
, we say $S_n \rightarrow -\omega$.
LIMIT SUPERIOR AND LIMIT INFERIOR
Let $\{Sn\}$ be a sequence in R.
Let $E = \{x : x \in IR \cup \{\pm \omega\}, \exists a subsequence \\ \{Sn_k\} of \{n\} \not Sn_k \rightarrow x\}$.
Thus E consists of all subsequential limits of
 $\{Sn\}$ plus, possibly, $\pm \infty$.
Put $s^* = \sup(E) \ S \ S_* = \inf(E)$
These numbers S^* and S_* are respectively called
the limit superior and limit inferior of $\{Sn\}$
and are denoted by
lim sup $s_n = S^*$ and lim $g_n = S_*$,
 $n \rightarrow \infty$
Thus E let $\{Sn\}$ be a sequence of real numbers
Let $S^* = Sup(E) \ S \ S_* = S_*$.
Put $S^* = S^* \ S^* \ S^* = S_*$.
 $S^* \ S^* \ S$

(ii) If x > 5", J NEIN > N > N inplies on a Moreover s* is the only number with (i) & (ii). Analogous result holds for s*. Proof: (i) Jf S*= too, E is not bounded above, hence so is fsng. This means there must be a subsequence { snkg of {sng 3 snk -> +00. => S*6E.

If <u>sein</u>, then E is bounded above and also closed (from Thm. 3. B), so that S*GE by a result proved earlier.

Jf s^{*}=-∞, then sup(E) = -∞. Then E contains only one element -∞, and there is no subsequential limit. Hence for any real M, sn > M for at most a finite number of values of n, so Sn ⇒ -∞. ⇒ S^{*} G E. (i) Suppose J x>s^{*} > Sn > x for infinitely many values of n. Then J y EE > y > x>s^{*}. But s^{*} = sup(E)

To show uniqueness of s*, suppose there are 2 numbers s* and s & suppose s*< S. Then choose x > s*< x<S. Since s* satisfies (ii), $G_n < x$ for n > N & N is some natural number. But then no subsequence can tend to s, which contradicts (i).

b) Let
$$S_n = \frac{(-1)^n}{1+1/n}$$
. Then
limsup $S_n = +1$ & liminf $S_n = -1$
 $n \rightarrow \infty$

Suppose we take the subsequence I's fraction. $\left\{S_{2n}\right\} = \left\{\frac{1}{1+\frac{1}{2n}}\right\} \longrightarrow 1$ Similarly, $\{S_{2n+1}\} = \{\frac{-1}{1+\frac{1}{2n+1}}\} = -1.$ $\begin{aligned} \lim_{n \to \infty} \sup_{n \to \infty} \sum_{i=1}^{\infty} \sum_$