MONOTONIC SEQUENCES

Defn. A seq. $\left\{s_{n}\right\}$ of real numbers is said to be-
(a) monotonically increasing if $s_{n} \leqslant s_{n+1}(n \in \mathbb{N})$
(b) monotonicaling decreasing if $s_{n} \geqslant s_{n+1}(n \in \mathbb{N})$.

The 3.7 If $\{s n\}$ is monotonic, them $\{s n\}$ converges iff it is bounded.

Proof: $W e$ prove the above assertion for monob.
incr. seq. The one for decreasing seq. is analogous. Suppose $s_{n} \leqslant s_{n+1} \forall n \in \mathbb{N}$.
Let E be the range of $\left\{s_{n}\right\}$. If $\left\{s_{n}\right\}$ is bounded, let s be the least upper bound of E. Then

$$
s_{n} \leqslant s \quad\left(n \in \mathbb{N}^{\prime}\right)
$$

For every $\varepsilon>0, \exists N \in \mathbb{N} \geqslant$

$$
S-\varepsilon<S_{N} \leqslant S \text {, }
$$

otherwise $s-\varepsilon$ would be an upper bound of E -
Since $\left\{s_{n}\right\}$ is increasing, for $n \geqslant N$,

$$
s-\varepsilon<s_{n} \leq s
$$

So $\left\{S_{n}\right\} \rightarrow s$.
Convergence \Rightarrow bounded is already dome. Δ

UPPER AND LOWER LIMITS
Let $\left\{S_{n}\right\}$ be a sequence in \mathbb{R} sit. for every real $M, \exists N \in N$ 于 $n \geqslant N$ implies $S_{n} \geqslant M$.

Them we say $S_{n} \rightarrow+\infty$.

Similarly, if for every real $M, 7 N \in \mathbb{N} \geqslant N \geqslant N$ implies $s_{n} \leqslant M$, we say $s_{n} \rightarrow-\infty$.

LIMIT SUPERIOR AND LIMIT INFERIOR
Let $\left\{S_{n}\right\}$ be a sequence in R.
Let $E=\{x: x \in \mathbb{R} \cup\{ \pm \infty\}, \exists$ a subsequence

$$
\left.\left\{s_{n_{k}}\right\} \text { of }\left\{s_{n}\right\} \geqslant s_{n_{k}} \rightarrow x\right\}^{r}
$$

Thus E consists of all subsequential limits of $\left\{s_{n}\right\}$ plus, possibly, $\pm \infty$.

$$
\text { Put } S^{*}=\sup (E) \& S_{*}=\inf (E)
$$

These numbers S^{*} and S_{*} are respectively called the limit superior and limit inferior of $\left\{s_{n}\right\}$ and are denoted by

$$
\limsup _{n \rightarrow \infty} s_{n}=s^{*} \text { and } \lim _{n \rightarrow \infty} \inf s_{n}=s_{*} \quad \text { OR }
$$

The. 3.8 Let $\left\{S_{n}\right\}$ be a sequence of real numbers.
Let E and s^{*} be as defined above. Then s^{*} has following two properties:
(i) $s^{*} \in E$
(ii) If $x>s^{*}, \exists N \in \mathbb{N} \Rightarrow n \geqslant N$ implies $S_{n}<x$.

Moreover s^{*} is the only number with (i) \& (ii).
Analogous result holds for s_{*}.

Proof: (i) If $S^{*}=+\infty$, E is not bounded above, hence so is $\left\{s_{n}\right\}$. This means there must be a subs equence $\left\{s_{n_{k}}\right\}$ of $\left\{s_{n}\right\} \geqslant s_{n_{k}} \rightarrow+\infty$.

$$
\Rightarrow s^{*} \in E
$$

If $S_{\epsilon}^{*} \mathbb{R}$, then E is bounded above and also closed (from Tho 3.5), so that $s^{*} \in E$ by a result proved earlier.

If $S^{*}=-\infty$, then $\sup (E)=-\infty$. Then E contains only one element $-\infty$, and there is no subsequential limit. Hence for any real $M, s_{n}>M$ for at most a finite number of values of $n, s 0$ $s_{n} \rightarrow-\infty$.

(ii) Suppose $\exists x>s^{*} \geqslant s_{n} \geqslant x$ for infinitely
many values of n. many values of n.

Then $\exists y \in E \geqslant y \geqslant x>s^{*}$. But $s^{*}=\sup (E)$

To show uniqueness of s^{*}, suppose there are 2 numbers s^{*} and s \& suppose $s^{*}<s$. Then choose $x \rightarrow s^{*}<x<s$. Since s^{*} satisfies (ii), $s_{n}<x$ for $n \geqslant N$ \& N is some natural number. But then no subsequence can tend to s, which contradicts (i).

Examples
a) $\left\{s_{n}\right\}$ is a sequence containing all rationals. Since rationals are dense in \mathbb{R}, $i z$, $\overline{\left\{s_{n}\right\}}=\mathbb{R}$, so any $x \in \mathbb{R}$ is a subsequential limit. So

$$
\limsup _{n \rightarrow \infty} s_{n}=+\infty, \liminf _{n \rightarrow \infty} s_{n}=-\infty
$$

b) Let $s_{n}=\frac{(-1)^{n}}{1+1 / n}$. Then

$$
\limsup _{n \rightarrow \infty} s_{n}=+1 \quad \& \quad \liminf _{n \rightarrow \infty} s_{n}=-1
$$

Suppose we take the subsequence $\left\{S_{2 n}\right\}$ for $n \in \mathbb{N}$.

$$
\left\{s_{2 n}\right\}=\left\{\frac{1}{1+1 / 2 n}\right\} \rightarrow 1
$$

Similarly,

$$
\left\{S_{2 n+1}\right\}=\left\{\frac{-1}{1+\frac{1}{2 n+1}}\right\} \rightarrow-1
$$

$$
\begin{aligned}
& \limsup _{n}=\sup \{-1,1\}=1 \\
& \lim _{n \rightarrow \infty}=\operatorname{sinf} s_{n}=\inf \{-1,1\}=-1
\end{aligned}
$$

