$$
\text { MA } 509 \text { - REAL ANALYSIS- LECTURE } 29
$$

The. 3.23 For any sequence $\left\{c_{n}\right\}$ of positive numbers,

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \leqslant \liminf _{n \rightarrow \infty} c_{n}^{1 / n} \\
& \limsup _{n \rightarrow \infty} c_{n}^{1 / n} \leqslant \limsup _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} .
\end{aligned}
$$

POWER SERIES
Def. Given a sequence $\left\{c_{n}\right\}$ of complex numbers, the series $\sum_{n=0}^{\infty} c_{n} z^{n}$ is called a power series.

- Associated to every power series is a circle (of convergence) such that the above power series converges if z is in the interior of the circle, and diverges if z is in the exterior.

On the circle itself, the behavior is more varied.

Thm.3.24 Given the power series $\sum c_{n} z^{n}$, put $\alpha=\limsup _{n \rightarrow \infty}\left|C_{n}\right|^{1 / n}$ \& $R=1 / \alpha$.
Then $\sum c_{n} z^{n}$ converges if $|z|<R$ and diverges if $|z|>R$.

Proof:- Apply root test with $a_{n}=c_{n} z^{n}$ so that

$$
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=|z| \limsup _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}=\frac{|z|}{R} .
$$

* R is called the radius of convergence $\left(r, 0, C_{1}\right)$ of the power series.

Examples
(1) $\sum n^{n} z^{n}$ has $R=0$ $n \rightarrow \infty$

$$
=\limsup _{n \rightarrow \infty} n=+\infty \Rightarrow q=\infty \text {. }
$$

(2) $\sum \frac{z^{n}}{n \mid}$ has $R=+\infty$.
(3) $\sum z^{n}$ has $R=1$. The series diverges for $|z|=1$ since $\left\{z^{n}\right\} \xrightarrow{\rightarrow}$ as $n \rightarrow \infty$.
(4) $\sum \frac{z^{n}}{n}$ has $R=1$. For $z=1$, it diverges.

It converges for $|z|=1, z \neq 1$.
(5) $\sum \frac{z^{n}}{n^{2}}$ has $R=1$. It converges for all z with $|z|=1$, since $\left|\frac{z^{n}}{n^{2}}\right|=\frac{1}{n^{2}}$.
(2) $\left.a_{n}=\frac{z^{n}}{n!} \quad \limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \rightarrow \infty}\left|\frac{z^{n+1}}{(n+1)}\right| \frac{n!}{z^{n}} \right\rvert\,$ $=\limsup _{n \rightarrow \infty} \frac{|z|}{n+1}=|z| \limsup _{n \rightarrow \infty} \frac{1}{n+1}$.

$$
\begin{aligned}
& =|z|, 0 \\
& =0<1 \text { for any } z \in \mathbb{C} .
\end{aligned}
$$

\Rightarrow Ratio test implies $\sum z^{n} / n!$ con $, \forall z \in \mathbb{C}, \Rightarrow R=\infty$.
(3)

$$
\begin{aligned}
& \sum z^{n} \cdot \quad c_{n} \equiv 1 \forall n \in \mathbb{N} \cup\{0\} \\
& R=\frac{1}{\limsup _{n \rightarrow \infty} c_{n}^{1 / n}}=\frac{1}{1}=1 .
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \sum_{c_{n}=1 / n} \frac{z^{n}}{n} \quad R=\frac{1}{\limsup _{\substack{n \rightarrow \infty}} c_{n}^{1 / n}}=\frac{1}{\limsup _{n \rightarrow \infty} \frac{1}{n^{1 / n}}} \\
& =\frac{1}{1}=1 .
\end{aligned}
$$

(5) Suppose $|z|=1$.

$$
\left|\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}\right| \leq \sum_{n=1}^{\infty} \frac{|z|^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

By comparison test, $\sum_{n=1}^{\infty} \frac{n^{n}}{n^{2}}$ converges.

SUMMATION BY PARTS
The. 3.25 Given 2 sequerress $\left\{a_{n}\right\} \&\left\{b_{n}\right\}$, let $A_{n}=\sum_{k=0}^{n} a_{k}$, if $n \geqslant 0$ \& let $A_{-1}=0$.

Then, if $0 \leq p \leq q$,

$$
\sum_{n=p}^{q} a_{n} b_{n}=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}
$$

Proof: See Rudin.

- The above 'partial summation formula" helps us in investigating the series of the form $\sum a_{n} b_{n}$, especially when $\left\{b_{n}\right\}$ is montonic.

Applications of the partial summation formula
Thm.3.26 Suppose
(a) the partial sums A_{n} of $\sum a_{n}$ form a bounded sequence;
(b) $b_{0} \geqslant b_{1} \geqslant b_{2} \geqslant \ldots$. ;
(c) $\lim _{n \rightarrow \infty} b_{n}=0$.

Then $\sum a_{n} b_{n}$ converges.
Proof: By a, $\exists M>0$ - $\left|A_{n}\right| \leq M \quad \forall n \in \mid N$.
By (c), given an $\varepsilon>0, f N \in N \geqslant b_{N} \leqslant \frac{\varepsilon}{2 M}$.
By the partial summation formula, for $N \leq p \leq q$,

$$
\begin{aligned}
& \left|\sum_{n=p}^{y_{n}} a_{n} b_{n}\right|=\left|\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}\right| \\
& \leqslant \sum_{n=p}\left|A_{n}\right|\left|b_{n-1} b_{n+1}\right|+\left|A_{q}\right| b_{q}+\left|A_{p-1}\right| b_{p}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=p}^{q-1}\left|A_{n}\right|\left(b_{n}-b_{n+1}\right)+\left|A_{q}\right| b_{q}+\left|A_{p-1}\right| b_{p}\left(\ddot{b}_{n} \geqslant b_{n+1}\right) \\
& \leqslant M\left(\sum_{n=p}^{q-1}\left(b_{n}-b_{n+1}\right)+b_{q}+b_{p}\right) \\
& \left.=2 M b_{p} \leq 2 m b_{N} \leq 2 m \cdot \frac{\varepsilon}{2 m}=\varepsilon+1+b_{q-1}+b_{p}+b_{p}\right)
\end{aligned}
$$

Hence $\sum a_{n} b_{n}$ converges by, Cauchy criterion.
The. 3.27 (Alternating series test)
(a) $\left|c_{1}\right| \geqslant\left|c_{2}\right| \geqslant\left|c_{3}\right| \geqslant \ldots$.
(b) $c_{2 m-1} \geqslant 0, c_{2 m} \leqslant 0 \quad(\forall m \in \mid \lambda)$
(c) $\lim _{n \rightarrow \infty}^{2 m-1} c_{n}=0$.

Then $\sum c_{n}$ converges.
Proof: Let $a_{n}=(-1)^{n+1}, b_{n}=\left|c_{n}\right|$ in Thm.3.26.
Note that $A_{n}=\sum_{k=0}^{n} a_{k}=\sum_{k=0}^{n}(-1)^{k+1} \leqslant 2$
Also by $(c), \lim _{n \rightarrow \infty} \mid c n 1=0$. So by Thm. 3.26,

$$
\sum(-1)^{n+1}\left|c_{n}\right| \text { converges } \sum_{n=1}^{\infty}(-1)^{n+1} c_{n}=c_{1}-\left(-c_{1}\right)+\cdots=c_{1}+c_{2}+c_{3}
$$

Thm.3.28 Suppose the radius of convergence of $\sum_{n} c_{n} z^{n}$ is 1 and suppose $c_{0} \geqslant c_{1} \geqslant c_{2} \geqslant \ldots ., \lim _{n \rightarrow \infty} c_{n}=0$. Then $\sum c_{n} z^{n}$ converges at every point on the circle $|z|=1$, except possibly at $z=1$.
Proof:- Let $a_{n}=z^{n} \& b_{n}=c_{n}$. The hypotheses of
The. 3.26 are satisfied since

$$
\left|A_{n}\right|=\left|\sum_{m=0}^{n} z^{m}\right|=\left|\frac{1-z^{m+1}}{1-z}\right| \leqslant \frac{2}{|1-z|}
$$

if $|z|=1, z \neq 1$.

Example
(4)

$$
\begin{aligned}
& \sum \frac{z^{n}}{n} \operatorname{com} \text {. for all } z=-|z|=1, z \neq 1 \\
& c_{n}=\frac{1}{n} \text { Apply, Thm-3 } \begin{array}{c}
28 \text { to } \\
\text { Conclude }
\end{array}
\end{aligned}
$$

