MA509-REAL ANALYSIS = LECTURE 33
Tum. 4.15 Let E be a non-compart set in R.
Then:
(a) 7 a cont -fr. on E which is not bounded.
(b) 7 a cont-ard bdd-fn. on E which has no maximum.

In addition to the above hypotheses, leoE be bounded. Then,
(c) 7 a cont -in. on E which is not u.c.

CASE 1: E is bounded
Proof: Since E is non-cpt., E is infinite.
Suppose first that E is $b d^{\prime} d$. Since E is not closed (why?) 7 a limit pt. x_{0} of E which is not in E: Consider

$$
f(x)=\frac{1}{x-x_{0}} \quad(x \in E)
$$

- f is cont. on E but unbid.
continuous and bounded
- To sec that 7 a f. on E which does not attain its maximum, consider

$$
g(x)=\frac{1}{1+\left(x-x_{0}\right)^{2}}, x \in E
$$

Then g is cont on E. It is also bed as $0<g(x)<1$.

$$
\text { Also, } \sup _{x \in E}(g(x))=1
$$

But $g(x)<1 \forall x \in E$.
Hence g has no maximum on E.

- The fact that the function defined in * is not uniformly continuous on E is a problem in the upcoming tretorial on coming Monday (Tut. 9).
CASE 2 E is unbounded
- $f(x)=x$ on, say, $(0, \infty)$ is continuous but unbounded.

$$
\text { - } h(x)=\frac{x^{2}}{1+x^{2}} \quad(x \in E)
$$

is a continuous and bounded function which does not attain its maximuon since $\sup _{x \in E} h(x)=1$,
and $h(x)<1 \forall x \in E$.

- However (c) is not always true if E is unbounded. For example, let $E=\mathbb{Z}$. Then every fr. defined on E is uniformly continuous on E. To dos, just take $\delta<1$ in the definition of uniform continuity.
Example Let $X=[0,2 \pi) \subset \mathbb{R}$. Let $f: X \rightarrow Y$, where Y is the unit circle, be defined by

$$
f(t)=(\cos t, \sin t) \quad(0 \leq t<2 \pi)
$$

Then f is continuous $1-1$ mapping of x onto Y. [f cont. at p means given ez o, $\mathcal{J} \delta>0 \rightarrow 7$ whenever $d_{k}(x, p)<\delta$, we have $d_{y}(f(x), f(p))<\varepsilon$
f not cont. at p means $\exists \varepsilon>0$ 子 $\forall \delta>0, \mathcal{F} \rightarrow$

$$
d_{x}(x, p)<\delta \text { but } d_{y}(f(x), f(p)) \geqslant \varepsilon
$$

But $f^{-1}: Y \rightarrow X$ is not continuous at the point $f(0)=(1,0)$.

CONTINUITY AND CONNECTEDNESS
Thm.4.16 If f is a continuous mapping of a metric space X into a metric space Y, and if E is connected subset of X, then $f(E)$ is a connected subset of Y.

Proof: (by contradiction)
Suppose $f(\bar{E})$ is not connected. Then $f(E)=A \cup B$, where A and B are non-empty separated subsets of Y.

Let $G=E \cap f^{-1}(A)$ and $H=E \cap f^{-1}(B)$.
Then $E=G$ UH, where $G \neq \phi$ and $H \neq \phi$.
Now $A C \bar{A}$ implies $f^{-1}(A) \subset f^{-1}(\bar{A})$ so that $G=E \cap f^{-1}(A) \subset E \cap f^{-1}(\bar{A})$.
\Rightarrow Since f is continuous on X and A is closed in $Y, f^{-1}(\bar{A})$ is closed in x.

However, \bar{G} is the smallest closed set in X containing G.

Thus $\bar{G} \subset f^{-1}(\bar{A})$.
$\Rightarrow f(\bar{G}) \subset \bar{A}$.
Now $f(H) \subset B$ and $\bar{A} \cap B=\phi$. This must mean $G \cap H=\phi$, for if $x \in G \cap H$, then $f(x) \in f(\bar{G}) \subset \bar{A}$, and $f(x) \in f(H) \subset B$.

$$
\Rightarrow f(x) \in \bar{A} \cap B=\hat{\phi} \quad \longrightarrow<
$$

This shows $\bar{G} \cap H=\phi$. Similarly, $G \cap F=\phi$. This is not possible if E is connected.

Thm. 4.17 INTERMEDIATE VALUE THEOREM Let f be a continuous real function on the interval $[a, b]$. If $f(a)<f(b)$ and if c is a number sit. $f(a)<c<f(b)$, then there exists a point $x \in(a, b) \geqslant f(x)=c$.

Proof: We know by a prev. the. that intervals in rare connected. Thus $[a, b]$ is connected subset of \mathbb{R}.

But f is a continuous real function on
$[a, b]$.
$\Rightarrow f([a, b])$ is a connected subset of \mathbb{R} (by The, 4,16).

$$
\begin{aligned}
& \Rightarrow \text { if } c \in \mathbb{R} \geqslant f(a)<c<f(b) \text {, then } c \in f([a, b]) \text {, } \\
& \text { i.e. } \exists x \in(a, b) \geqslant f(x)=c \text {. }
\end{aligned}
$$

Remark: The converse of the intermediate value theorem is not true.

