MA509-REAL ANALYSIS - LECTURE 36

Thm.5.6 Suppose f is differentiable in (a, b).
(i) If $f^{\prime}(x) \geqslant 0 \quad \forall x \in(a, b)$, then f is monotonically increasing.
(ii) If $f^{\prime}(x)=0 \quad \forall x \in(a, b)$, then f is constant.
(iii) If $f^{\prime}(x) \leq 0 \quad \forall x \in(a, b)$, then f is monotonically decreasing.

Proof: Let $x_{1}, x_{2} \in(a, b) \neq a<x_{1}<x_{2}<b$.
Since f is continuous on $\left[x_{1}, x_{2}\right]$ \& differentiabk on $\left(x_{1}, x_{2}\right)$. So $7 x \in\left(x_{1}, x_{2}\right) \rightarrow$

$$
\begin{aligned}
& \left.x_{2}\right) \text {. So } x \in\left(x_{1}, x_{2}\right)= \\
& f\left(x_{2}\right)-f\left(x_{1}\right)=\left(x_{2}-x_{1}\right) \cdot f^{\prime}(x) .(\text { by MVT })
\end{aligned}
$$

So for example, if $f^{\prime}(x) \geqslant 0$, then $x_{2}>x$, implies, $f\left(x_{2}\right) \geqslant f\left(x_{1}\right)$. The other two conclusions follow similarty.
The continuity of derivatives
Consider functions which are differentiable on every point of an interval. Then their derivatives have one important property common with functions continuous on an interval, and that is, intermediate values are assumed.

The. 5.7 Suppose f is a real differential le function on $[a, b]$, and suppose $f^{\prime}(a)<\lambda<f^{\prime}(b)$. Then $f x \in(a, b)$ - $f^{\prime}(x)=\lambda$.

A similar result holds if $f^{\prime}(a)>f^{\prime}(b)$.

Proof: Let $g(t)=f(t)-\lambda t$.
Claim: $g\left(t_{1}\right)<g(a)$ for some $t_{1} \in(a, b)$ \qquad
This is because, if $g(t) \geqslant g(a) \forall t \in(a, b)$, then $\frac{g(t)-g(a)}{t-a} \geqslant 0$. Since $g^{\prime}(a)$ exists,

$$
g^{\prime}(a+)=g^{\prime}(a) \text {. Hence } \lim _{t \rightarrow a^{+}} \frac{g(t)-g(a)}{t-a} \geqslant 0
$$

$$
\Rightarrow g^{\prime}(a) \geqslant 0
$$

This contradicts the fact that $g^{\prime}(a)<0$, which, in tum, follows from the fact that b $f^{\prime}(a)<\lambda$.

Similarly $g^{\prime}(b)>0$ implies that $\neq t_{2} \in(a, b) \geqslant$ $g\left(t_{2}\right)<g(b)$.

Since f is differentiable om $[a, b]$, it is continuous on $[a, b]$. Hence so is g.

Since $[a, b]$ is compact, g attains its minimum on $[a, b]$ at some point $x \in(a, b)$. (from (a) \& (b))
Since $g^{\prime}(x)$ exists on $[a, b]$, it follows from Thm.5.3 that $g^{\prime}(x)=0$.

Cor.5.8 If f is differentiable on $[a, b]$, then f^{\prime} cannot have any simple discontinuities on $[a, b]$.

$$
\begin{aligned}
& L=\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \\
& =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{6} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{6} \text {. } \\
& \sin x=\frac{x-\frac{x^{3}}{31}+\frac{x^{3}}{51}-\cdots \Rightarrow \frac{x \sin x}{x^{3}}}{x} \\
& \text { Let } x=3 \theta \text {. Then } L=\lim _{\theta \rightarrow 0} \frac{3 \theta-\sin (3 \theta)}{(3 \theta)^{3}} \\
& =\frac{1}{27} \lim _{\theta \rightarrow 0} \frac{3 \theta-\left(3 \sin \theta-4 \sin ^{3} \theta\right)}{\theta^{3}}=\frac{1}{27}\left(3 \lim _{\theta \rightarrow 0} \frac{\theta-\sin \theta}{\theta 3}\right. \\
& \begin{aligned}
=\frac{1}{27}(3 L+4) & \Rightarrow 27 L=3 L+4 \\
& \left.\Rightarrow 24 L=4-L=1 / 8 \quad \$ \lim _{1 \rightarrow 0} \frac{\sin \theta}{\theta}\right)
\end{aligned} \\
& \text { L'HOSPITAL'S RULE }
\end{aligned}
$$

The. 5.9 Suppose f and g are real and differentiable in (a, b), and $g^{\prime}(x) \neq 0 \quad \forall x \in(a, b)$, where $-\infty \leqslant a<b \leqslant 7 \infty$. Suppose $\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A$ as $x \rightarrow a$.
If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, or if $g(x) \rightarrow+\infty$ as $x \rightarrow a$, then $\frac{f(x)}{g(x)} \rightarrow A$ as $x \rightarrow a$.

Analogous result holds if $x \rightarrow b$, or if $g(x) \rightarrow-\infty$ in (4).
Proof: Consider first thee case $-\infty \leqslant A<+\infty$. Choose $q \in \mathbb{R}$ Э $A<q$. Then choose $r \in \mathbb{R} \mathcal{F} \nless r<q$.

By (1), $\exists c \in(a, b) \geqslant a<x<c$ implies
(5) $\rightarrow \frac{f^{\prime}(x)}{g^{\prime}(x)}<r$. (Why?) for if, $\frac{f^{\prime}(x)}{g^{\prime}(x)} \geqslant r$ $\Rightarrow \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \geqslant \gamma \Rightarrow A \geqslant \gamma \ldots$
If $a<x<y<c$, then by Thu $5 \cdot 4, \exists t \in(x, y) \geqslant$

$$
\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f^{\prime}(t)}{g^{\prime}(x)}<r .
$$

(Why is $g(x) \neq g(y)$ \& $g^{\prime}(t) \neq 0$)
by Role's theorem, for, if $g(x)=g^{(}(y), \exists t \in(x, y) \nexists g^{\prime}(t)=0$

- Suppose (2) holds. Let $x \rightarrow a$ in (6), then

$$
\frac{f(y)}{g(y)}<r<q \quad(a<y<c)
$$

Now suppose (3) holds. Fix y in (6) 8 choose a point $c_{1} \in(a, y) \rightarrow g(x)>g(y)$ and $g(x)>0$ if $\left(a<x<c_{1}\right)$. Multiplying both sides of (6) by
$q(x)-g(y)$, we see that $\frac{q(x)-g(y)}{g(x)}$, we sec that

$$
\begin{align*}
\frac{f(x)-f(y)}{g(x)} & <r\left(\frac{g(x)-g(y)}{g(x)}\right) \\
\text { ie., } \frac{f(x)}{g(x)} & <r-\frac{g(y)}{g(x)}+\frac{f(y)}{g(x)} \tag{1}
\end{align*}
$$

Let $x \rightarrow a$ in (8). Since $g(x) \rightarrow \infty$ as $x \rightarrow a$, $\exists c_{2} \in\left(a, c_{1}\right) \ni$

$$
\begin{equation*}
\frac{f(x)}{g(x)}<r<q \quad\left(a<x<c_{2}\right) . \tag{9}
\end{equation*}
$$

(7) \& (9) imply that for any q, subject only to the condition $A<q, \exists c_{2}, \frac{f(x)}{g(x)}<q$ if $a<x<c_{2}$.

Similarly, if $-\infty<A \leqslant+\infty$, and p is chosen so that $p<A, 7 C_{3} \geqslant p<\frac{f(x)}{g(x)} \quad\left(a<x<c_{3}\right)$.

Hence (10) \& (11) imply, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A$.

