$(\overline{\mathcal{F}} \& \underline{q})$ imply that for any q, subject only to the condition $A \leq q_2$, $\overline{\mathcal{F}} \subseteq \underline{\mathcal{F}} \underbrace{f(x)}_{g(x)} \leq q_1$ if $a \leq x \leq c_2$, (\overline{q})

Similarly, if $-\infty < A \le +\infty$, and p is chosen so that p < A, $F p < \frac{f(x)}{g(x)}$ (a< $x < c_a$) g(x) (1)

Hence (10 & (1) imply, lim fix) = A.

· lim x + sinx - lim 1+cosx x ~ x - x ~ Not correct) = lim (tosz does not (Not correct) Crist. $\lim_{x \to \infty} \frac{\tan^2 x}{x} \quad f(x) = \tan^2 x$ g(x) = x $g(x) \to \infty \quad as \quad x \to \infty$ lim f(x) exite because lim (1+x2) =0. $\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \sigma,$

17/11/2020

MA 509 - REAL ANALYSIS - LECTURE 37

Derivatives of higher order

• In order for $f^{(n)}(x)$ to exist at a point x, $f^{(n-n)}(t)$ must exist in a neighborhood of x(or a one-sided nbhd, if x is an endpoint of the interval on which f is defined), and $f^{(n-1)}$ must be differentiable at x. Since $f^{(n-1)}$ must exist in a nbhd of x, $f^{(n-2)}$ must be differentiable in that nbhd,

Thm. 5.10 (TAYLOR'S THEOREM) Suppose f is a real function on [a,b] ne N, f(n-i) is continuous on [a, b], f(n)(t) exists for every te (a, b). Let a, B be distinct points of la,b], and define $P(t) = \sum_{k=0}^{n-1} \frac{f^{\binom{k}{(\alpha)}}(t-\alpha)^{k}}{k!} \qquad (**)$ Then $\exists xe(\alpha,\beta) \neq f(\beta) = P(\beta) + \frac{f(\alpha)}{n!}(\beta-\alpha)^n$ Remarks : 1) n=1 gives mean value theorem.

(2) The above theorem implies that f can be approximated by a polynomial of degree n-1, and that (***) can be used to estimate the error, provided we know bounds of I f^(m)(x)].

Proof: Define M by

$$f(p) = P(p) + M(p-\alpha)^n$$
 D
Let $g(t) = f(t) - P(t) - M(t-\alpha)^n$ ($a \le t \le b$).
Claim: $M = f^{(m)}(\alpha)$ for some $\chi \in (\alpha, \beta)$.
 $from (*)$ and D ,
 $g^{(m)}(t) = f^{(n)}(t) - n! M$ ($a < t < b$).
Thus we will be done if we can show that
 $g^{(m)}(x) = 0$ for some $\chi \in (\alpha, \beta)$.
Note that for $k = 0, 1, 2, ..., n-1$,
 $P^{(k)}(\alpha) = f^{(k)}(\alpha)$
 $=) g(\alpha) = g^{(\alpha)} = ... = g^{(n-1)}(\alpha) = 0$.
By our choice of M, $g(p) = 0$.
Thus by Polle's thm, $\mathcal{F}(\chi) \in (\alpha, \beta) \mathrel{\mathcal{F}} g^{(1)}(\chi) = 0$.
Again since $g'(\alpha) = 0, \mathcal{F}(\chi) \in (\alpha, \chi_1) \mathrel{\mathcal{F}} g^{(1)}(\chi) = 0$.
After n steps, we see that $\mathcal{F}(\chi_1) \in (\alpha, \chi_{n-1}) \mathrel{\mathcal{F}} g^{(1)}(\chi_1) = 0$.

F

Hence |f'(x)| = 1 + x elf.

(2) On (0, 1), define $f(x) = x \notin g(x) = x + x e^{i/x^2}$. $\begin{array}{c|c} \lim_{x \to 0} \left| \frac{f(x)}{g(x)} - 1 \right| = \lim_{x \to 0} \left| \frac{x}{x + x^2 e^{i/x^2}} - 1 \right| \\ = \lim_{x \to 0} \left| \frac{-x^2 e^{i/x^2}}{|x + x^2 e^{i/x^2}|} \right| = \lim_{x \to 0} \frac{x}{|1 + x e^{i/x^2}|} \end{array}$ But by severse - triangle inequality, $||+xe^{1/x^{2}}| \gg ||-|x|| = ||-x|.$ $= \lim_{x \to 0} \left| \frac{f(x)}{g(x)} - 1 \right| \leq \lim_{x \to 0} \frac{x}{(1-x)} = 0$ $\Rightarrow \lim_{x \to 0} \left| \frac{f(x)}{q(x)} - 1 \right| = 0$ $= \lim_{x \to 0} \frac{f(x)}{g(x)} = 1.$ Next, $q'(x) = 1 + (2x - \frac{2i}{x}) t'x^2$ (0 < x < 1)Thus, $|g'(x)| = |2x - \frac{2i}{x}| - 1 = \frac{2}{x} - 1$ (Hence $q'(x) \neq 0$ for, if q'(x)=0 for some x, we would have $0, \frac{2}{5} = 1 = 2, \frac{2}{5} = 2, \frac{2}{5} = \frac{2}{5}$ $= \frac{f'(x)}{g(x)} = \frac{1}{|g'(x)|} = \frac{1}{2-x} = \frac{1}{2-x}$

 $= \lim_{\alpha \to 0} \frac{f'(x)}{g'(x)} = 0.$