24/11/2020

MA 509 - REAL ANALYSIS - LECTURE 40

(h.7 - SEQUENCES AND SERIES OF FUNCTIONS

Suppose ifnj is a sequence of functions defined on aⁿ⁼¹ set E, and suppose that ifn(x)j (the sequence of numbers) converges for every ⁿ⁼¹ xeE. Then we can define a function f by f(x) = lim fn(x) (xEE) n > 00

Then we say {fn} converges on E and that f is the limit, or the limit function of (fn}. We also say "{fn} converges to f pointwise on E".

Similarly, if Ifn(x) converges for every XEE, and if we defind f(x) = I fn(x) (XEE), then f is called the sum of n=1 series 2fn.

PROBLEMS WORTH STUDYING

① If the functions fn are continuous, or differe -ntiable, or integrable, is the same true for lim fn (provided, it exists) ?

Declation between for & f where f=limfor.

3 Relation between Ifn & If, where f = lim fn.

Note that saying the limit for f is continuous
at x implies
$$\lim_{t\to\infty} f(t) = f(x)$$
.
Hence, to ask whether the limit of a sequence of
of continuous functions is continuous is the
same as asking whether
 $\lim_{t\to\infty} \lim_{n\to\infty} \int_n (t) = \lim_{n\to\infty} \int_{t\to\infty} \int_$

So define
$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \begin{cases} 0, x=0 \\ 1+x^2, x\neq 0 \end{cases}$$

Note that f is a convergent series of
Continuous functions.
But f is not continuous at $x=0$ since
 $\lim_{n \to 0} f(x) = 1+(0)^n = 1 \neq 0 = f(0)$.
 $\Im(\to 0)^n$
 $\Im(\to 0)^n$

(*) Let
$$f(x) = s \frac{in(nx)}{\sqrt{n}}$$
 $x \in \mathbb{R}, n \in \mathbb{N}$
Then $f(x) = \lim_{n \to \infty} f_n(x) = 0$ (': $|sin(nx)| \leq 1$)
 $\Rightarrow f'(x) = 0$.
But $f_n'(x) = \frac{n\cos(nx)}{\sqrt{n}} = \sqrt{n}\cos(nx)$.
 $\Rightarrow f'_n' \Rightarrow f' = ince, for example, $f_n'(0) \Rightarrow \infty$
and $f'(0) = 0$.
(5) Let $f_n(x) = n^2x(1-x^2)^n$ ($o\leq x\leq 1, n\in \mathbb{N}$)
Let $o< x\leq 1$. For $Ch.3$, we know that
if $p = 0$ & $a \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^2}{(1+x^2)^n} = 0$.
Let $d = 2$ $A = \frac{x^2}{1-x^2}$. Then
Let $d = 2$ $A = \frac{x^2}{1-x^2}$. Then
 $\lim_{n \to \infty} \frac{n^2}{(1+x^2)^n} = \lim_{n \to \infty} n^2(1-x^2)^n = 0$
Also, $f_n(0) = 0$, then $\lim_{n \to \infty} f_n(x) = 0$.
Also, $f_n(0) = 0$, then $\lim_{n \to \infty} f_n(x) = 0$.
Now $\int_0^1 x(1-x^2)^n dx = \frac{1}{2n+2}$
 $\Rightarrow \int_0^1 f_n(x) dx = \frac{n^2}{2n+2} \Rightarrow \infty \text{ as } n \to \infty$
 $\Rightarrow \infty = \lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx = 0$$

Suppose
$$f_n(x) := nx(1-x^2)^n$$
.

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \frac{n}{2n+2} = \frac{1}{2}$$
But $\int_0^1 f(x) dx = \int_0^1 o dx = 0$.

UNIFORM CONVERGENCE

Defn. A sequence of functions {fng converges uniformly on E to a function f if for every E>O FNEIN > n>N implies |fn(x)-f(x)| < E VxEE.

Difference between pointwise and uniform converge

If {fn} converges uniformly on E, if given E>D, we can find one integer N which will do the above V XEE.

·) fnix converges uniformly on E if the sequence of sny of its partial sums, i.e., { fimily converges uniformly on E.

Thm.7.2 Suppose lim fn(x) = f(x) (xGE). Set Mn = sup Ifn(x)-f(x) . Then fn - f unif. on E wiff Mn→o as n→∞. Proof: given 270, 7 NEIN > N7N, xEE, Ifn(x)-f(x) < E =) = Sup / fn(x)-f(m) < E xGE Thm. 7.3 (Weierstrass M-test) Suppose {fn} is a sequence of functions defined on E, and suppose Ifn(x) (xEE, nEIN). Then Zfn converges uniformly if ZMn converges Proof: Since ZMn < 00, given E>0, JNGN > $\forall n, m \geq N, \qquad \sum_{i=n}^{m} M_i \leq \varepsilon.$ $But \mid \sum_{i=n}^{m} f_i(x_i) \mid \leq \sum_{i=n}^{m} \mid f_i(x_i) \mid \leq \sum_{i=n}^{m} M_i \leq \varepsilon.$ By Cauchy criterion for uniform convergence, i.e. Thm. 7-1, we see that 2 fn converges uniformly on E,