MA 509 - Real Analysis - Lecture 7

* CAUCHY - SCHWARE - BUNIAKOWSKI INEQUALITY

The. 1.14 If $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are complex numbers, then

$$
\begin{equation*}
\left|\sum_{j=1}^{n} a_{j} b_{j}\right|^{2} \leqslant\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{n}\left|b_{j}\right|^{2}\right) \tag{1}
\end{equation*}
$$

Proof: Let \sum denote the sum $\sum_{j=1}^{n}$.
Let $A=\sum\left|a_{j}\right|^{2}, B=\sum\left|b_{j}\right|^{2}, C=\sum a_{j} \bar{b}_{j}$.
If $B=0$. thenclearly, $b_{1}, b_{2}, \ldots, b_{n}$ all are zero. Hence (1) clearly holds.
Now let $B>0$. Then

$$
\begin{aligned}
0 \leqslant & \sum\left|B a_{j}-C b_{j}\right|^{2} \\
= & \sum\left(B a_{j}-C b_{j}\right)\left(B \overline{a_{j}}-\overline{C b_{j}}\right) \\
= & B^{2} \sum\left|a_{j}\right|^{2}-B \bar{C} \sum a_{j} \overline{b_{j}}-B C \sum \overline{a_{j}} b_{j}+|C|^{2} \sum\left|b_{j}\right|^{2} \\
= & B^{2} A-B|C|^{2}-B|C|^{2}+B|C|^{2} \\
= & B\left(A B-|C|^{2}\right)
\end{aligned}
$$

Dividing both sides by B, we are led to

$$
A B-|C|^{2} \geqslant 0
$$

EUCLIDEAN SPACES
Let $k \in \mathbb{N}$. Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, where $\underbrace{x_{1}, x_{2}, \cdots, x_{k}} \in \mathbb{R}$.

$$
\begin{array}{r}
\text { coordinates of vector } \bar{x} . \\
(\overline{\text { for } k}>1)
\end{array}
$$

If $\alpha \in \mathbb{R}$, put

$$
\bar{x}+\bar{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{k}+y_{k}\right)
$$

and $\alpha \bar{x}=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{k}\right)$.
Now if $R^{k}=\left\{\bar{x}: \bar{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right), k \in \mathbb{N}\right\}^{1<i \leqslant n} n$ then $\bar{x}+\bar{y} \in \mathbb{R}^{k}, \alpha \bar{x} \in \mathbb{R}^{k}$.
$\Rightarrow \mathbb{R}^{k}$ is a vector space over \mathbb{R} (exercise) where $\bar{O}=(\underbrace{0,0,0_{2} \ldots, 0}_{k \text {-tuple }})$.
Inner product: $\bar{x} \cdot \bar{y}:=\sum_{i=1}^{k} x_{i} y_{i}$
Norm: $|\bar{x}|=\sqrt{\bar{x} \cdot \bar{x}}=\left(\sum_{i=1}^{k} x_{i}^{2}\right)^{1 / 2}$
\mathbb{R}^{k} with the above inner product and norm is called euclidean k-space.

Thm, 1.15 Suppose $\bar{x}, \bar{y}, \bar{z} \in \mathbb{R}^{k}$ and $\alpha \in \mathbb{R}$. Then:
(a) $|\bar{x}| \geqslant 0 \quad|\bar{x}|=\sqrt{\sum_{i=1}^{k} x_{i}^{2}} \geqslant 0$ (sinec $\left.x_{i}^{2} \geqslant 0,1 \leqslant i \leqslant k\right)$
(b) $|\bar{x}|=0$ iff $\bar{x}=0$
(c) $|\alpha \bar{x}|=|\alpha||\bar{x}| \quad|\alpha \bar{x}|=\left|\left(\alpha x_{1}, \alpha x_{2}, \cdots, \alpha x_{k}\right)\right|=\sqrt{\left.\sum_{i=1}^{k} \mid \alpha x_{i}\right)^{2}}$
(d) $|\bar{x} \cdot \bar{y}| \leqslant|\bar{x}||\bar{y}|$
(e) $|\bar{x}+\bar{y}| \leq|\bar{x}|+|\bar{y}|$
(f) $|\bar{x}-\bar{z}| \leqslant|\bar{x}-\bar{y}|+|\bar{y}-\bar{z}|$

Proof: (a), (b), (c) trivial (Cauchy_Schwarr
(d)

$$
\begin{aligned}
|\bar{x} \cdot \bar{y}| & =\left|\sum_{i=1}^{k} x_{i} y_{i}\right| \leqq \sqrt{\left(\sum_{i=1}^{k} x_{i}^{2}\right)\left(\sum_{i=1}^{k} y_{i}^{2}\right)} \\
& =|\bar{x}||\bar{y}| .
\end{aligned}
$$

(e)

$$
\left.\begin{array}{rl}
|\bar{x}+\bar{y}|^{2} & =(\bar{x}+\bar{y}) \cdot(\bar{x}+\bar{y}) \\
& =\bar{x} \cdot \bar{x}+2 \bar{x} \cdot \bar{y}+\bar{y} \cdot \bar{y} \\
& \leqslant|\bar{x}|^{2}+2|\bar{x}| \cdot|\bar{y}|+|\bar{y}|^{2}
\end{array}\right\} \begin{aligned}
& \bar{x} \cdot \bar{y} \\
& \\
& \\
& =(|\bar{x}|+|\bar{y}||\bar{y}|)^{2} .
\end{aligned} \begin{aligned}
& \because|a| \leqslant b \\
& \Leftrightarrow-b \leqslant a \leqslant b)
\end{aligned}
$$

Now take sq. roots on both sides.
(f) In (e), replace \bar{x} by $\bar{x}-\bar{y}$ and \bar{y} by $\bar{y}-\bar{z}$ so that

$$
|\bar{x}-\bar{z}|=|(\bar{x}-\bar{y})+(\bar{y}-\bar{z})| \leqslant|\bar{x}-\bar{y}|+|\bar{y}-\bar{z}| .
$$

Remark: (a), (b) and (f) turn \mathbb{R}^{k} into a metric space.

Chapter 2 - BASIC TOPOLOGY

Function:

Defn: Let A and B be two sets. Suppose that we associate to each element of A, one and only one element of B. Then f is said to be a function from A to B. (d noted by $f: A \rightarrow B$).

- A: Domain of f
- Set of all values of f, that is,
$\{f(x): x \in A\}$ is called the range or co-domain of f.
$E \subseteq A$
- $f(E)=\{f(x): x \in E\}$.
$f(E)$ is the image of E under f.
$\Rightarrow f(A)$ is the range of f. Note that $f(A) \subseteq B$.
- Surjective function f is said to be surjective if $f(A)=B$, that is, to every element $y \in B, \exists x \in A \ni f(x)=y$.
In this case, we say f maps A onto B.
- Let $E \subseteq B$. Then

$$
f^{-1}(E)=\{x \in A: f(x) \in E\} .
$$

$f^{-1}(E)$ is called the inverse image of E under f.

- Injective function
f is said to be infective (one-one) if for each $y \in B, f^{-1}(y)$ consists of at most one clement of A.

In other words, f is injective if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$, where $x_{1}, x_{2} \in A$.

- Bijective function (1-1 correspondence) f is said to be bijective, if it is injective as well as surjective.
- f is also said to be a 1-1 mapping.
- If 2 sets A and B can be put in a $1-1$ correspondence, then we say A and B have the same cardinal number (or A and B have same cardinality) and say $A \sim B$
(A equivalent to B).
- A~A (reflexive)
- $A \sim B \Leftrightarrow B \sim A$ (symmetric)
- $A \sim B \& B \sim C \Rightarrow A \sim C$ (transitive)

Any relation with the above 3 properties is called an equivalence relation.

Defn. Let $n \in \mathbb{N}$ and $J_{n}:=\{1,2, \ldots, n\}$.
Let $J=\mathbb{N}$ (the set of all natural numbers.)
For any set A, we say
(a) A is finite if $A \sim J_{n}$ for some n.
(b) A is infinite if A is not finite
(c) A is countable if $A \sim J$.
(d) A is uncountable if A is neither finite nor countable
(c) A is atmost countable if A is finite or countable.

