2/9/2020 MA 509 - REAL ANALYSIS - Lecture 8 - If 2 sets A and B can be put in a l-1 comespondence, then we say A and B have the same cardinal number (or A and B have same cardinality) and say A~B (A equivalent to B). A~A (reflexive) A~B <>>> B~A (symmetric) $A \sim B \ L \ B \sim C \implies A \sim C \ (transitive)$.ه. Q, 162 · 63 93. ____ b_4 Any relation with the above 3 properties is called an <u>equivalence</u> relation. Defn. Let ne IN and Jn := { 1, 2, ..., n}. Let J=IN (the set of all natural numbers.) For any set A, we say (a) A is finite if A~Jn for some n. (b) A is infinite if A is not finite (c) A is countable if A~J. (d') A is uncountable if A is neither finite nor countable (c) Ais at most countable if A is finite or Countrable. A

Ex. 1
$$A = Z$$
, $J = N$.
Then $f: N \to Z$ given by $f(z) = 1$
 $f(n) = \begin{cases} n/2 & \text{, if } n \text{ is even}, f(z) = 2 \\ f(z) = -1 \\ f(z) = 2 \\ -\frac{(n-1)}{2}, \text{ if } n \text{ is odd}, \end{cases}$
is a bijection, so $A \sim J$, hence countable.
2) Let $f: N \to 2IN$ defined by $f(n) = 2n$.
Then check that f is a bijection.
Remark : A finite set cannot be equivalent
to one of its proper subsets, i.e., if $E \subseteq A$,
 $|A| < \infty$, then $E \neq A$.
However, this is true for infinite sets as can
be seen from the above two examples.
Defn. A sequence is a function defined on
the set J of all positive integers.
If $f(n) = x_n$, $n \in J$, then the sequence is
denoted by f(xn).
The terms x_1, x_2, \dots of a sequence need
not be distinct.

· Since every countable set is the range of a 1-1 function defined on J, every countable set can be regarded as the range of a sequence of distinct terms. Thus, elements of any countable set can be "arranged in a sequence". Thm 2.1 Every infinite subset of a countable set is countable Proof: Suppose ECA and E is infinite. Case 1: If E=A, there is nothing to prove. Case 2: $E \subseteq A$ $\sqrt{\{\chi_1, \chi_2, \chi_3, \chi_4, \chi_5, \dots, \chi_5\}}$ Arrange the elements x of A in a sequence {xn} of distinct elements. We construct a sequence { nr 2 as follows: 2nkt as follows; Let n, be the smallest positive integer s.t. $x_n, \in E$. After choosing n_1, n_2, \dots, n_{k-1} (k=23,4,...) let n_k be the smallest integer greater than n_{k-1} s.t. $x_{n_k} \in E$. $\{E = \{x_{500}, x_{791}, x_{1001}, \dots, y\}$, KEJ. Infrire Now let $f(k) = \chi_{n_k}$ This implies that ENJ, whence E is countable.

• No uncountable set can be a subset of a countable set.