$$
\text { MA } 509 \text { - REAL ANALYSIS - Lecture } 8^{2 / 9 / 2020}
$$

- If 2 sets A and B can be put in a $1-1$ correspondence, then we say A and B have the same cardinal number (or A and B have same cardinality) and say $A \sim B$
(A equivalent to B).
- A~A (reflexive)
- $A \sim B \Leftrightarrow B \sim A$ (symmetric)
$-A \sim B \& B \sim C \Rightarrow A \sim C$ (transitive)

Any relation with the above 3 properties is called an equivalence relation.

Defn. Let $n \in \mathbb{N}$ and $J_{n}:=\{1,2, \ldots, n\}$.
Let $J=\mathbb{N}$ (the set of all natural numbers.) For any set A, we say
(a) A is finite if $A \sim J_{n}$ for some n.
(b) A is infinite if A is not finite
(c) A is countable if $A \sim J$.
(d) A is uncountable if A is neither finite nor countable
(c) A is at most countable if A is finite or countable.

Ex, $1 \quad A=\mathbb{Z}, \quad J=\mathbb{N}$
Then $f: \mathbb{N} \rightarrow \mathbb{Z}$ given by

$$
\left\{\begin{array}{c}
f(1)=0 \\
f(2)=1 \\
f(3)=-1 \\
f(4)=2 \\
f(5)=-2
\end{array}\right.
$$

is a bijection, so $A \sim J$, hence countable.
2) Let $f: \mathbb{N} \rightarrow 2 \mathbb{N}$ defined by

$$
f(n)=2 n
$$

Then check that f is a bijection.
Remark: A finite set cannot be equivalent to one of its proper subsets, i-e; if ECA, $|A|<\infty$, then $E \nsim A$.

However, this is true for infinite sets as can be seen from the above two examples.

Defn. A sequence is a function defined on the set J of all positive integers.

If $f(n)=x_{n}, n \in J$, then the sequence is d choked by $\left\{x_{n}\right\}$.

- The terms x_{1}, x_{2}, \ldots of a sequencenced not be distinct.
- Since every countable set is the range of a 1-1 function defined on J, every countable set can be regarded as the range of a sequence of distinct terms.

Thus, elements of any countable set can be "arranged in a sequence".

Thm.2.1 Every infinite subset of a countable set is countable

Proof: Suppose ECA and E is infinite.
Case 1: If $E=A$, there is nothing to prove.
Case 2: $\quad \underset{\perp}{C} A \quad, \quad\left\{x_{1}, x_{3}, x_{3}, \ldots . ..\right\}$
Arrange the elements x of A in a sequence $\{x n\}$ of distinct elcincnts. We construct a sequence $\left\{n_{k}\right\}$ as follows:

Let n_{1} be the smallest positive integer sob. $x_{n_{1}} \in E$. After choosing $n_{1,} n_{2}, \ldots, n_{k-1}(k=2,3,4, \ldots)$) let n_{k} be the smallest integer greater than

$$
\begin{aligned}
& n_{k-1} s . t \quad x_{n_{k}} \in E . \quad\left\{E=\left\{x_{500,}, x_{791,}, x_{1001} \ldots\right\}\right. \\
& \text { Now let } f(k)=x_{n_{k}}, k \in J . \text { infinite }
\end{aligned}
$$

This implies that $E \sim J$, whence E is countable.

- No uncountable set can be a subset of a countable set.

