MA 509-REAL ANALYSIS - LECTURE 9
Defn. Let $A \& \Omega$ be sets. Suppose that with each element α of A there is associated a subsel of Ω, denoted by E_{α}.

The set whose elements are the sets E_{α} will be denoted by $\left\{E_{\alpha}\right\}$.
Example: $A=\{x: x \in \mathbb{R}, 0<x \leqslant 1\}=(0,1]$.
For every $x \in A$, let $E_{x}=\{y: y \in \mathbb{R}, 0<y<x\}$ $=(0, x)$.
Then:
(i) $E_{x} \subset E_{z}$ iff $0<x \leq z \leq 1$.
(ii) $\bigcup_{x \in A} E_{x}=E_{1}$.
(iii) $\bigcap_{x \in A} E_{x}=\phi$.

Proof of (iii): For every $y>0$, if $x<y$, then $y \notin E_{x}$. Hence $y \notin \bigcap_{x \in A} E_{x}$.

Thy. 2.2 Let $\left\{E_{n}\right\}, n \in J$, be a sequence of countable sets. Let $S=\bigcup_{n=1}^{\infty} E_{n}$. Then S is countable.
(In particular, a countable union of countable sets is countable.)

Proof: Let every set E_{n} be arranged in a seq: $\left\{x_{n k}\right\}, k=1,2,3, \ldots$. Consider the infinite array

For each $n \in J$, the elements of En form the $n^{\text {th }}$ row. Note that the above array contains all the elements of S.

Arrange the above elements in the sequence

$$
x_{11} ; x_{21}, x_{12} ; x_{31}, x_{22}, x_{13} ; x_{41}, x_{32}, x_{23}, x_{14} ; \ldots
$$

If any 2 of the sets E_{n} have elements in common they will appear more than once in the above sequence.

Hence there is a subset T of the set of natural numbers such that $S \sim T$ so that S is at most countable (by Thm.2.1).

But $E_{1} \subset S$ and E_{1} is infinite $\Rightarrow S$ is infinite.
$\Rightarrow S$ is countable.

Remark: A finite union of countable sets is countable.

Cor. 2.3 Suppose A is at most countable, and for every $\alpha \in A, B_{\alpha}$ is at most countable. Let

$$
T=\bigcup_{\alpha \in A} B_{\alpha}
$$

Then T is at most countable.
In other words, an at most countable union of at most countable sets is at most countable.

Proof: Note that $T \subseteq \bigcup_{n=1}^{\infty} E_{n}$ from Thm.2.2.,
Theorem 2.4 Let A be a countable set, and let B_{n} $b e$ the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$, where $a_{k} \in A$, $1 \leqslant k \leqslant n$, and the elements a_{1}, \ldots, a_{n} need not be distinct. Then B_{n} is countable.

Proof: (1) B_{1} is countable as $B_{1}=A$.
(2) Suppose B_{n-1} is cocintable, where $n \in J_{,} n>1$.
(3) The elements of B_{n} can be written in the form (b, a), where $b \in B_{n-1}$ and $a \in A$.

Now let b be fixed. Then
$\left\{(b, a): b \in \mathcal{B}_{n-1}\right.$ fixed, $\left.a \in A\right\} \sim A$, and hence countable. Thus, B_{n} is a countable union of countable sets, and hence, by Thm. 2.2, is countable.
$\Rightarrow B_{n}$ is countable by induction $\forall n \in \mathbb{N}$.

Cor. 2.5 The set of all rational numbers is countable.
Proof: Let $n=2$ in Theorem 2.4 and note that (a, b) can $b e$ identified with a rational $\gamma=\frac{a}{b}, \quad a, b \in \mathbb{Z}$.
Thm.2.6 Let A bethe set of all sequences whose elements are the digits $0 \& 1$. Then A is uncountable.

Proof: Let $E \subseteq A$ be countable. Let $E=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$.
Note that each s_{i} is a string consisting of o's \&i's. we construct a new sequence s as follows:

- If $n^{\text {th }}$ digit in S_{n} is 1 , the $n^{\text {th }}$ digit of s is 0
- If $n t^{\text {th }}$ digit in S_{n} is 0 , that in s is 1 .

So $s \neq s_{n} \forall n \in \mathbb{N}$. (as it differs at at least one place.)
$\Rightarrow s \notin E$ so that $E \subset A(i \cdot e, E$ is a proper subset of A).

Thus, every countable subset of A is a proper subset of A.
$\Rightarrow A$ is uncountable, for if A were countable, the above sentence would imply $A \subset A$, which is absurd.

Remark: This process is called Cantor's diagonalization

Cor. 2.7 \mathbb{R} is uncountable.
Proof: We assume that every real number has a binary representation (base 2). Then the result follows from the above the orem.

METRIC SPACES
Defn. A metric space X is a set such that with any two elements p, q of X (called points), there is associated a real number $d(p, q$) (called the distance from p to q) sit.
(a) $d(p, q)>0$ if $p \neq q$ \& $d(p, p)=0$.
(b) $\quad d(p, q)=d(q, p)$
(c) $d(p, q) \leq d(p, r)+d(r, q)$ for any $r \in X$.
(d is called the distance function or metric.)
Eg: $1 \mathbb{1} R$ is a metric space.
(2) \mathbb{R}^{k} (Euclidean space) with the metric $d(\bar{x}-\bar{y})=|\bar{x}-\bar{y}|,\left(x, y \in \mathbb{R}^{k}\right)$.
(3) $e(k)$

- Every subset of a metric space is a metric space.

