MA 509: Tutorial 11 (2020)

1. Suppose α increases on [a, b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathscr{R}(\alpha)$ and that $\int f d\alpha = 0$.

2. Suppose $f \ge 0$, f is continuous on [a, b], and that $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. (Compare this with the above problem.)

3. Suppose f is a bounded real function on [a, b], and $f^2 \in \mathscr{R}$ on [a, b]. Does it follow that $f \in \mathscr{R}$? Does the answer change if we assume that $f^3 \in \mathscr{R}$?

4. Suppose $f \in \mathscr{R}$ on [a, b] for every b > a, where a is fixed. Define

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

if this limit exists (and is finite). In that case, we say that the integral on the left converges. If it also converges after f has been replaced by |f|, it is said to converge absolutely.

Assume that $f(x) \ge 0$ and that f decreases monotonically on $[1, \infty)$. Prove that $\int_{1}^{\infty} f(x) dx$ converges iff $\sum_{n=1}^{\infty} f(n)$ converges. (This is the "integral test" for convergence of series.)

genee of series.)

5. Let p and q be positive real numbers such that 1/p + 1/q = 1. Prove the following statements.

(a) [Young's inequality] If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds iff $u^p = v^q$.

(b) If $f \in \mathscr{R}(\alpha), g \in \mathscr{R}(\alpha), f \ge 0, g \ge 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$

then

$$\int_{a}^{b} fg \, d\alpha \le 1.$$

(c) If f and g are complex functions in $\mathscr{R}(\alpha)$, then

$$\left|\int_{a}^{b} fg \, d\alpha\right| \leq \left\{\int_{a}^{b} |f|^{p} \, d\alpha\right\}^{1/p} \left\{\int_{a}^{b} |g|^{p} \, d\alpha\right\}^{1/q}.$$

This is *Hölder's inequality*. When p = q = 2, it reduces to the Cauchy-Schwarz inequality.

(d) Show that Hölder's inequality is also true for "improper" integrals.

6. Suppose α increases monotonically on [a, b], g is continuous, and g(x) = G'(x) for $a \le x \le b$. Prove that

$$\int_{a}^{b} \alpha(x)g(x) \, dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G \, d\alpha.$$

Hint: Take g real, without loss of generality. Given $P = \{x_0, x_1, \dots, x_n\}$, choose $t_i \in (x_{i-1}, x_i)$ so that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. Show that

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta\alpha_i.$$