MA 509: Tutorial 11 (2020)

1. Suppose α increases on $[a, b], a \leq x_{0} \leq b, \alpha$ is continuous at $x_{0}, f\left(x_{0}\right)=1$, and $f(x)=0$ if $x \neq x_{0}$. Prove that $f \in \mathscr{R}(\alpha)$ and that $\int f d \alpha=0$.
2. Suppose $f \geq 0, f$ is continuous on $[a, b]$, and that $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$. (Compare this with the above problem.)
3. Suppose f is a bounded real function on $[a, b]$, and $f^{2} \in \mathscr{R}$ on $[a, b]$. Does it follow that $f \in \mathscr{R}$? Does the answer change if we assume that $f^{3} \in \mathscr{R}$?
4. Suppose $f \in \mathscr{R}$ on $[a, b]$ for every $b>a$, where a is fixed. Define

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

if this limit exists (and is finite). In that case, we say that the integral on the left converges. If it also converges after f has been replaced by $|f|$, it is said to converge absolutely.

Assume that $f(x) \geq 0$ and that f decreases monotonically on $[1, \infty)$. Prove that $\int_{1}^{\infty} f(x) d x$ converges iff $\sum_{n=1}^{\infty} f(n)$ converges. (This is the "integral test" for convergence of series.)
5. Let p and q be positive real numbers such that $1 / p+1 / q=1$. Prove the following statements.
(a) [Young's inequality] If $u \geq 0$ and $v \geq 0$, then

$$
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q}
$$

Equality holds iff $u^{p}=v^{q}$.
(b) If $f \in \mathscr{R}(\alpha), g \in \mathscr{R}(\alpha), f \geq 0, g \geq 0$, and

$$
\int_{a}^{b} f^{p} d \alpha=1=\int_{a}^{b} g^{q} d \alpha
$$

then

$$
\int_{a}^{b} f g d \alpha \leq 1
$$

(c) If f and g are complex functions in $\mathscr{R}(\alpha)$, then

$$
\left|\int_{a}^{b} f g d \alpha\right| \leq\left\{\int_{a}^{b}|f|^{p} d \alpha\right\}^{1 / p}\left\{\int_{a}^{b}|g|^{p} d \alpha\right\}^{1 / q}
$$

This is Hölder's inequality. When $p=q=2$, it reduces to the Cauchy-Schwarz inequality.
(d) Show that Hölder's inequality is also true for "improper" integrals.
6. Suppose α increases monotonically on $[a, b], g$ is continuous, and $g(x)=G^{\prime}(x)$ for $a \leq x \leq b$. Prove that

$$
\int_{a}^{b} \alpha(x) g(x) d x=G(b) \alpha(b)-G(a) \alpha(a)-\int_{a}^{b} G d \alpha .
$$

Hint: Take g real, without loss of generality. Given $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$, choose $t_{i} \in\left(x_{i-1}, x_{i}\right)$ so that $g\left(t_{i}\right) \Delta x_{i}=G\left(x_{i}\right)-G\left(x_{i-1}\right)$. Show that

$$
\sum_{i=1}^{n} \alpha\left(x_{i}\right) g\left(t_{i}\right) \Delta x_{i}=G(b) \alpha(b)-G(a) \alpha(a)-\sum_{i=1}^{n} G\left(x_{i-1}\right) \Delta \alpha_{i}
$$

