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MA 509 - Tutorial 12 solutions
① Prove that every uniformly convergent sequence
of bounded functions is uniformly bounded .
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This is because if the series converged
uniformly on [o, 87, then ,
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sequence of partial sums of the series is
uniformly bounded , since the partial sums
are bounded . (to see this
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This shows f- is unbounded . →e .

Hence the series does not converge uniformly
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Now if
the

~ seriesconverged uniformly on ( - G, O] , then
the sequence of its partial sums satisfies the
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⑤ From④ , we see that f- is not bounded .


