MA 509: Tutorial 2 (2020)

1. If r is rational $(r \neq 0)$ and x is irrational, prove that $r+x$ and $r x$ are irrational.
2. Fix $b>1$.
(a) If m, n, p, q are integers, $n>0, q>0$, and $r=m / n=p / q$, prove that

$$
\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q} .
$$

Hence it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$.
(b) Prove that $b^{r+s}=b^{r} b^{s}$ if r and s are rational.
(c) If x is real, define

$$
B(x):=\left\{b^{t}: t \in \mathbb{Q}, t \leq x\right\} .
$$

Prove that when r is rational, we have $b^{r}=\sup (B(r))$. Hence it makes sense to define $b^{x}=\sup (B(x))$ for every real x.
(d) Prove that $b^{x+y}=b^{x} b^{y}$ for all real x and y.
3. Suppose $z=a+i b, w=u+i v$, and

$$
a=\left(\frac{|w|+u}{2}\right)^{1 / 2}, b=\left(\frac{|w|-u}{2}\right)^{1 / 2}
$$

Prove that $z^{2}=w$ if $v \geq 0$ and that $(\bar{z})^{2}=w$ if $v \leq 0$. Conclude that every complex number (with one exception!) has two complex square roots.

