MA 509: Tutorial 5 (2020)

1. Let $K = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Show that K is compact directly from the definition.

2. We have proved in class that if $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite sub-collection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty. Also, we have shown that as a result of the above theorem, we get that if $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ for every $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} K_n$ is nonempty.

Show that the above results become false (in \mathbb{R} , for example) if the word 'compact' is replaced by 'closed' or by 'bounded'.

3. Regard \mathbb{Q} , the set of all rational numbers, as a metric space, with d(p,q) = |p-q|. Let *E* be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that *E* is closed and bounded in *Q*, but that *E* is not compact. Is *E* open in \mathbb{Q} ?

4. Is there a nonempty perfect set in \mathbb{R} which contains no rational number?