5/9/2020

MA 509 - Tutorral 5 Solutions (2020) K = 2 + : nein zu zoz.
 Show: K is compact (directly from defn.) Proof: 2 {Ka} compact sets with fire (intersection =) (Ka ≠ \$\overline\$.) Cor. {Kn} compace Kn⊃Kn+, + nen → Kn + ¢. Given the materic space IR, give counter-examples to the above result if compact is replaced by closed or bdd. (1) Compact' replaced by "bounded": $\bigcap_{n=1}^{n} A_n = \phi$ 0<~<1 XZO nx > |x>+ x & (0, m)

(done previously) from notes \bigcirc Let $x \in (0, i]$. Then for every such x, $\mathbf{E} \mathbf{x} = (\mathbf{0}, \mathbf{x})$. $\bigcap E_{\chi} = \phi$. (2) "Compact" replaced by "closed": An = IN, a), nen $\begin{array}{ccc} x \neq 0 & n \neq \chi \\ \infty & \chi \notin [n, \infty] \\ n = 1 & n = \phi \end{array}$

(3) Consider the metric space of with d(p,q)=1p-q1, for any p,qe1R. Let An= of pe gt: V2-1 < p< J2+12 for each nein. By prob.3 of this tutorial, each An is closed in Q Also, Ân DAnti Vnein. Hower ÂAn=\$ since V2 \$ \$\$,

3 Q metric space with d(p,q)=1p-q1. $E = \{ p \in Q : 2 < p^2 < 3 \}.$ Show: • E is closed & bounded but not compact. • Is E open in B Proof: (i) Claim: Eisclosed, in Q. We show that E^c is open in Q Note that E^c = E, U E₂UE3, where E, = { p e Q : - @ < p < - v3 } $E_2 = \{ p \in Q : -\sqrt{2}$ $<math>(E_3 = \{ p \in Q : \sqrt{3}$ <math>(because f vational number whose square is 2 or 3)Eachof E, Ez, Ez can be written in the form G n Q, where G is open in X. for example $E_1 = (-\infty, -\sqrt{3}) \cap \mathbb{Q}$. B SO ON. in B =) E is open =) E is closed in B. (ii) E is bold in Q, since -2<p<2.

Claim:
(ii) E is not compact.
In any metric space, the following two
statements are equivalent:
• E is compact
• Every infinite subset of E has a
limit point in E.
Note that if we take S to be a subset
of E consisting of rationals bending to (3,
then the limit point
=
$$\int e G : 2 $J = 4 E$
=) E is not compact.
2nd method: Construct an open cover which doesn's
have a finite subcover. for example,
 $Un = \{p: 2 , $n \in N$, $n \ge 2$
Show in each case that Un is open in G
for each new, $n \ge 2$.
Then show that f finite
subcover of $f(Dn)$.
Note that E is open in G for
 $E = G \cap O,$ where
 $G := (-VB, -VE) U(VZ, VB)$ is an
Open set in R .$$$