MA 509: Tutorial 6 (2020)

1. Are closures and interiors of connected sets always connected? (Hint: Look at subsets of \mathbb{R}^2 .)

2. (a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.

(b) Prove the same for disjoint open sets.

(c) Fix $p \in X, \delta > 0$, define A to be the set of all $q \in X$ for which $d(p,q) < \delta$, define B similarly with > in place of <. Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncountable. (Hint: Use (c)).

3. A metric space is called *separable* if it contains a countable dense subset. Show that \mathbb{R}^k is separable.

(Hint: Consider the set of points which have only rational coordinates.)

4. We have proved in class that any non-empty perfect set in \mathbb{R}^k must be uncountable. Imitate its proof (done in class) to obtain the following result:

If $\mathbb{R}^k = \bigcup_{n=1}^{\infty} F_n$, where each F_n is a closed subset of \mathbb{R}^k , then at least one F_n has a non-empty interior.

Equivalent statement: If G_n is a dense open subset of \mathbb{R}^k , for $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} G_n$ is not empty (in fact, it is dense in \mathbb{R}^k).

This is a special case of a famous result, namely, the Baire category theorem.