MA 509: Tutorial 7 (2020)

1. Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$. Is the converse true?
2. Calculate $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$.
3. Let $\left\{s_{n}\right\}$ be a real-valued sequence. Prove that $\lim _{n \rightarrow \infty} s_{n}=s$ iff $\lim \sup _{n \rightarrow \infty} s_{n}=$ $\liminf _{n \rightarrow \infty} s_{n}=s$.
4. For any two real sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

provided the sum on the right is not of the form $\infty-\infty$.
5. Find the upper and lower limits of the sequence $\left\{s_{n}\right\}$ defined by

$$
s_{1}=0 ; \quad s_{2 m}=\frac{1}{2} s_{2 m-1} ; \quad s_{2 m+1}=\frac{1}{2}+s_{2 m}
$$

