MA 509: Tutorial 8 (2020)

1. Investigate the behavior (convergence and divergence) of $\sum a_{n}$ if

$$
\begin{aligned}
& a_{n}=\sqrt{n+1}-\sqrt{n}, \\
& a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}, \\
& a_{n}=\left(n^{1 / n}-1\right)^{n}, \\
& a_{n}=\frac{1}{1+z^{n}}, \text { for complex values of } z .
\end{aligned}
$$

2. Prove that the convergence of $\sum a_{n}$ implies the convergence of $\sum \frac{\sqrt{a_{n}}}{n}$ if $a_{n} \geq 0$.
3. If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.
4. If $\left\{E_{n}\right\}$ is a sequence of closed and bounded sets in a complete metric space X, if $E_{n} \supset E_{n+1}$, and if $\lim _{n \rightarrow \infty} \operatorname{diam} E_{n}=0$, then $\cap_{n=1}^{\infty} E_{n}$ consists of exactly one point.
5. Find the radius of convergence of each of the following series:
(a) $\sum n^{3} z^{n}$,
(b) $\sum \frac{2^{n} z^{n}}{n!}$,
(c) $\sum \frac{2^{n} z^{n}}{n^{2}}$,
(d) $\sum \frac{n^{3} z^{n}}{3^{n}}$.
6. Suppose $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are Cauchy sequences in a metric space X. Show that the sequence $\left\{d\left(p_{n}, q_{n}\right)\right\}$ converges.
(Hint: For any m, n,

$$
d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(p_{m}, q_{m}\right)+d\left(q_{m}, q_{n}\right)
$$

it follows that

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right|
$$

is small if m and n are large.

