MA 623: Homework 1 (Due: January 25)

(Note: Justify all the relevant steps.)

1. Prove that if $p \nmid x$, then $p \nmid\binom{p^{k} x}{p^{k}}$.
(Note that here x is a positive integer and k is a non-negative integer.)
2. In a letter to Euler in 1742 , Goldbach stated that 'Every integer greater than 5 is the sum of three primes'. Euler replied that this was equivalent to 'Every even integer greater than or equal to 4 is the sum of two primes'. Show that these two statements are equivalent.
3. Imitate Euclid's proof to prove that there are infinitely many primes of the form $4 n+3$.
(Hint: Let $p_{1}, p_{2}, \ldots, p_{k}$ be the finite number of such primes (excluding 3). Consider $N=4 p_{1} \cdots p_{k}+3$. Use the fact that the product of numbers of the form $4 k+1$ is again of the form $4 k+1$ to show that N has a prime divisor of the form $4 n+3$.)
4. Let $F_{n}=2^{2^{n}}+1$ be the $n^{\text {th }}$ Fermat number. Use the identity $a^{2}-b^{2}=(a-b)(a+b)$ to show that

$$
F_{n}-2=F_{0} F_{1} F_{2} \cdots F_{n-1} .
$$

Conclude that $\left(F_{n}, F_{m}\right)=1$ for all $n \neq m$.

