MA 623: Homework 2 (Due February 15)

(Note: Justify all the relevant steps.)

1. For positive integers m and q, the Ramanujan sum $c_{q}(m)$ is defined by

$$
c_{q}(m):=\sum_{\substack{k=1 \\(k, q)=1}}^{q} e^{2 \pi i k m / q}
$$

(a) Prove that

$$
c_{q}(m)=\sum_{d \mid(m, q)} d \mu\left(\frac{q}{d}\right)
$$

Now define the function $M(x)$ by

$$
M(x):=\sum_{j \leq x} \mu(j)
$$

(b) Prove that

$$
\sum_{q=1}^{n} c_{q}(m)=\sum_{d \mid m} d M\left(\frac{n}{d}\right)
$$

and, in particular, that

$$
\sum_{q=1}^{m} c_{q}(m)=\sum_{d \mid m} d M\left(\frac{m}{d}\right) .
$$

(c) Prove that

$$
M(m)=m \sum_{d \mid m} \frac{\mu(m / d)}{d} \sum_{q=1}^{d} c_{q}(d)
$$

(d) Prove that

$$
\sum_{m=1}^{n} c_{q}(m)=\sum_{d \mid q} d \mu\left(\frac{q}{d}\right)\left\lfloor\frac{n}{d}\right\rfloor
$$

2. A positive integer n is called squarefull if it satisfies

$$
p\left|n \Longrightarrow p^{2}\right| n
$$

(Note that $n=1$ is squarefull according to this definition, since 1 has no prime divisors and the above implication is therefore vacuously true.) Show that n is squarefull if and only if it can be written in the form $n=a^{2} b^{3}$ with $a, b \in \mathbb{N}$.
3. Let $d(n)$ denote the divisor function of n, that is, $d(n)=$ the number of positive divisors of n. Given an arithmetic function f such that $\sum_{n=1}^{\infty}|f(n)| d(n)<\infty$, define its "transform" \hat{f} by

$$
\hat{f}(j)=\sum_{n=1}^{\infty} f(n j) \quad(j \in \mathbb{N})
$$

Find (with proof) the corresponding "inverse transform", that is, a formula expressing $f(j)$ in terms of the values $\hat{f}(n)$.
4. Let φ and Λ denote the Euler totient and von Mangoldt functions respectively. Show that

$$
\left(\varphi^{-1} * \Lambda\right)(n)=n \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \frac{\log d}{d}
$$

