MA 623: Homework 4 (Due: April 16)

(Note: Justify all the relevant steps.)

1. Let ϕ denote the Euler totient function. For each $j \in \mathbb{N}$, define

$$
a(j)=|\{n \in \mathbb{N}: \phi(n)=j\}| .
$$

Let $\sigma=\operatorname{Re}(s)$. Assuming that the series $\sum_{n=1}^{\infty} \varphi(n)^{-s}$ converges absolutely for $\sigma>1$, prove that the identity

$$
\sum_{j=1}^{\infty} \frac{a(j)}{j^{s}}=\sum_{n=1}^{\infty} \frac{1}{\varphi(n)^{s}}=\zeta(s) \prod_{p}\left(1+(p-1)^{-s}-p^{-s}\right)
$$

holds for $\sigma>1$. You can also assume that the product over p on the right side also converges absolutely for $\sigma>1$.
2. Let $a(n)$ be the greatest odd divisor of n. Prove that for $\sigma>2$,

$$
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\frac{1-2^{1-s}}{1-2^{-s}} \zeta(s-1)
$$

