MA 623: Tutorial 2

1. Let $k \in \mathbb{N}$ be fixed. "Evaluate" the following function, that is, write it in the form of simpler arithmetic function(s):

$$
\sum_{\substack{d|n \\ k| d}} \mu(d) .
$$

2. (a) Suppose f is multiplicative. Prove that

$$
\sum_{d \mid n} f(d)=\prod_{p^{a} \| n}\left(1+f(p)+f\left(p^{2}\right)+\cdots+f\left(p^{a}\right)\right)
$$

(Note: Here, the product on the right is taken over all primes p that divide n. The additional information furnished from the notation $p^{a} \| n$ is that the p-adic valuation of n is a.)
(b) Suppose that $\sum_{n=1}^{\infty}|f(n)|$ converges. Show that

$$
\sum_{n=1}^{\infty} f(n)=\prod_{p}\left(1+f(p)+f\left(p^{2}\right)+\cdots\right)
$$

3. Assume f is multiplicative. Prove that
(a) $f^{-1}(n)=\mu(n) f(n)$ for square-free n.
(b) $f^{-1}\left(p^{2}\right)=f(p)^{2}-f\left(p^{2}\right)$ for every prime p.
