MA 631: Homework 1 (Due September 15)

(Note: Justify all the relevant steps.)

1. Prove the following properties satisfied by the Bernoulli numbers/Bernoulli polynomials:

$$
\begin{aligned}
B_{n}(x+y) & =\sum_{k=0}^{n}\binom{n}{k} B_{k}(x) y^{n-k} \\
B_{n}(1-x) & =(-1)^{n} B_{n}(x) \\
B_{n}(x+1)-B_{n}(x) & =n x^{n-1} \\
\sum_{k=0}^{n}\binom{n+1}{k} B_{k}(x) & =(n+1) x^{n} \\
\int_{a}^{x} B_{n}(t) d t & =\frac{B_{n+1}(x)-B_{n+1}(a)}{n+1}
\end{aligned}
$$

2. Prove the following formulas for $n \in \mathbb{N}$:

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^{2 n}} & =\frac{(-1)^{n+1}(2 \pi)^{2 n}\left(1-2^{1-2 n}\right) B_{2 n}}{2(2 n)!} \\
\sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{2 n}} & =\frac{(-1)^{n+1}(2 \pi)^{2 n}\left(1-2^{-2 n}\right) B_{2 n}}{2(2 n)!}
\end{aligned}
$$

3. Evaluate $\int_{0}^{\infty} \frac{x^{a}}{a^{x}} d x$ for $\operatorname{Re}(\log a)>0$ and $\operatorname{Re}(a)>-1$.
4. Obtain an estimate for the sum $\sum_{n \leq x} \frac{\log n}{n}$ with error term $O\left(\frac{\log x}{x}\right)$. You do not need to "evaluate" some constants that appear in the formula, but do express them as sums or products.
5. (a) Show that $\frac{1}{\phi}=\frac{1}{N} * f$, where $f=\frac{\mu^{2}}{N \cdot \phi}$.
(b) Show that $\sum_{n=1}^{\infty} f(n)=O(1)$.
(c) If $x \geq 2$, show that

$$
\sum_{n \leq x} \frac{1}{\phi(n)}=O(\log x)
$$

