MA 631: Homework 2 (Due September 22)

(Note: Justify all the relevant steps.)

1. We proved in class that
${ }_{2} F_{1}(a, b ; a+b-c+1 ; 1-z)=P \cdot{ }_{2} F_{1}(a, b ; c ; z)+Q z^{1-c}{ }_{2} F_{1}(a-c+1, b-c+1 ; 2-c ; z)$, where

$$
P=\frac{\Gamma(a+b-c+1) \Gamma(1-c)}{\Gamma(a-c+1) \Gamma(b-c+1)} .
$$

Prove that

$$
Q=\frac{\Gamma(c-1) \Gamma(a+b+1-c)}{\Gamma(a) \Gamma(b)} .
$$

2. Derive the Chu-Vandermonde identity by equating the coefficients of x^{n} on each side of

$$
(1-x)^{-a}(1-x)^{-b}=(1-x)^{-(a+b)} .
$$

3. Kummer's confluent hypergeometric function is defined by

$$
{ }_{1} F_{1}(a ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!} .
$$

This series converges absolutely for all $z \in \mathbb{C}$.
Prove Kummer's relation

$$
{ }_{1} F_{1}(a ; c ; z)=e^{z}{ }_{1} F_{1}(c-a ; c ;-z) .
$$

