MA 631: Homework 3 (Due November 8)

(Note: Justify all the relevant steps.)

1. Prove that the differential equation satisfied by the Laguerre polynomial $L_{n}^{\alpha}(x)$ is

$$
x y^{\prime \prime}+(\alpha+1-x) y^{\prime}+n y=0
$$

2. Prove that the differential equation satisfied by the Hermite polynomial $H_{n}(x)$ is

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 .
$$

3. Let $T_{n}(x)$ be the Chebyshev polynomial of the first kind of degree n. Show that for $0 \leq \theta \leq \pi$,

$$
T_{n}(\cos \theta)=\cos (n \theta), \text { or in other words } T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right) .
$$

(Hint: Work with the differential equation satisfied by the Chebyshev polynomial.)

