MA 631: Homework 3 (Due November 8)

(Note: Justify all the relevant steps.)

- 1. Prove that the differential equation satisfied by the Laguerre polynomial $L_n^{\alpha}(x)$ is $xy'' + (\alpha + 1 - x)y' + ny = 0.$
- 2. Prove that the differential equation satisfied by the Hermite polynomial $H_n(x)$ is y'' - 2xy' + 2ny = 0.
- 3. Let $T_n(x)$ be the Chebyshev polynomial of the first kind of degree n. Show that for $0 \le \theta \le \pi$,

 $T_n(\cos\theta) = \cos(n\theta)$, or in other words $T_n(x) = \cos(n\cos^{-1}(x))$.

(Hint: Work with the differential equation satisfied by the Chebyshev polynomial.)