MA 631: Special Functions (2022) - Tutorial 1

1. Prove that $B_{n}(-x)=(-1)^{n}\left(B_{n}(x)+n x^{n-1}\right)$.
2. For $m \geq 1$, prove Raabe's multiplication formula for Bernoulli polynomials:

$$
\frac{1}{m} \sum_{k=0}^{m-1} B_{n}\left(x+\frac{k}{m}\right)=m^{-n} B_{n}(m x) .
$$

3. (i) Prove that $\frac{z}{2}\left(\operatorname{coth}\left(\frac{z}{2}\right)-1\right)=\frac{z}{e^{z}-1}$.
(ii) Show that $2 \operatorname{coth}(2 z)-\operatorname{coth}(z)=\tanh (z)$ and hence show that for $|z|<\pi / 2$,

$$
\tanh (z)=1-\sum_{n=0}^{\infty} \frac{T_{n} z^{n}}{n!},
$$

where T_{n} are the tangent numbers defined by

$$
B_{n}=\frac{-n T_{n-1}}{2^{n}\left(2^{n}-1\right)}, \quad n=1,2, \cdots,
$$

and B_{n} are Bernoulli numbers.
(iii) Finally prove that for $|z|<\pi / 2$,

$$
\tan (z)=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{T_{2 n+1} z^{2 n+1}}{(2 n+1)!} .
$$

