## MA 631: Special Functions (2022) - Tutorial 2

1. Prove the following formulas for $n \in \mathbb{N}$ :

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^{2 n}}=\frac{(-1)^{n+1}(2 \pi)^{2 n}\left(1-2^{1-2 n}\right) B_{2 n}}{2(2 n)!}, \\
& \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{2 n}}=\frac{(-1)^{n+1}(2 \pi)^{2 n}\left(1-2^{-2 n}\right) B_{2 n}}{2(2 n)!}
\end{aligned}
$$

2. If $n$ is a positive integer and $a>b$, prove that

$$
\int_{0}^{\pi} \frac{(\sin x)^{n-1}}{(a+b \cos x)^{n}} d x=\frac{2^{n-1}}{\left(a^{2}-b^{2}\right)^{n / 2}} \frac{(\Gamma(n / 2))^{2}}{\Gamma(n)}
$$

(Hint: Note that

$$
\left.\sin x=\frac{2 \tan (x / 2)}{1+\tan ^{2}(x / 2)}, \quad \cos x=\frac{1-\tan ^{2}(x / 2)}{1+\tan ^{2}(x / 2)} .\right)
$$

3. Prove that for $\operatorname{Re}(p)>0$ and $\operatorname{Re}(q)>0$,

$$
B(p, q)=\int_{0}^{\infty} \frac{x^{p-1}}{(1+x)^{p+q}} d x
$$

4. Prove the following functional relation

$$
B(x, y)=\frac{x+y}{y} B(x, y+1) .
$$

5. Show that $\Gamma(x)$ is logarithmically convex on $(0, \infty)$.

Hint: Use Holder's inequality which states that if $p$ and $q$ are positive real numbers satisfying $1 / p+1 / q=1$ and $f$ and $g$ are non-negative Riemann integrable functions, then

$$
\begin{equation*}
\int_{a}^{b} f g d x \leq\left(\int_{a}^{b} f^{p} d x\right)^{1 / p}\left(\int_{a}^{b} g^{q} d x\right)^{1 / q} \tag{0.1}
\end{equation*}
$$

