1719121			
MA 633 - Partition Theory - Lec. 21			
·Rank and creank of a partition			
• In 1919, Ramanujan found			
$P(5n+4) \equiv 0 \pmod{5}$			
$p(71+5) = 0 \pmod{71}$			
$p(5n+4) \equiv 0 \pmod{5}$ $p(7n+5) \equiv 0 \pmod{7}$ $p(11n+6) \equiv 0 \pmod{11}$			
(1944) Dyson found a partition statistic which distributes partitions of 5n+4 & 7n+5 into 5 & 7 equinumerous classes			
71+5 into 527 equinumerous classes			
respectively.			
This statistic is called the rank of a partition, and is defined by			
largest part - number of parts,			
=> vank(IT) = L(IT) - # parts.			
largest part — number of parts, ⇒ rank(TT) = L(TT) - # parts. (TT is a partition)			
Consider 5 partitions of 4.			
ptn:0f4 yank yank(mod 5) 4 4-1=3 3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
2+2 $2-2=0$ 0			
2+1+1 $2-3=-1$ 4			
+ + + -4=-3 2			

Consider 7	partitions	of 5 vank (mod 7)		
	' rank	vank (mod7)		
5	4	4		
4-+1	2	2		
3+2	1	(
3+1+1	0	Ò		
2+2+1	-1	6		
2+1+1+1	-2	_5		
1+1+1+1+1	-4			
We see that	every repr	esentative of a		
residue clas	s mod 7 at	esentative of a pears once &		
only once.				
1				
Let Norm) denote t	the number of		
partitions of	f a with	rank = r (mod m)		
partitions of n with rank = r (mod m). Then Dyson conjectured that				
N(05.50+4)	$) = N(1)^{2}$	5 50+4)		
N(0, 5, 5n+4) = N(1, 5, 5n+4) = $N(2, 5, 5n+4) = N(3, 5, 5n+4)$				
= N(4, 5, 5n+4)				
	···· + /,			

& similarly for 7.

 Dyson's conjecture was proved by Atkin & Swinnerton-Dyer.

But rank didn's do a similar thing for partitions of lints.				
1				
Consider, tor	example t	hell partitions		
of G		· · · · · · · · · · · · · · · · · · ·		
	rank	rank (mod 11)		
6	5	5		
5+1	S	G		
4+2	2,	2		
4+1+1]	1 2		
3+3	1	Trepetit		
3+2+1	\bigcirc	0.7 - 10 ms		
3+1+1+1	1	10 (
2+2+2	- 1	10		
2+2+1+1	-2	9		
271717171	-3	8		
1+1+1+1+1	-5	6		
		-		

Dyson hypothesized the existence of another partition statistic, called crank, which will do the job.

• 44 years later, the crank was found by George Andrews & Frank Garvan |