2319121
MA 633 - Partition Theory - Lee. 23
The, 40 Let $N(m, n)$ denote the number of partitions of n with rank m. Then

$$
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} N(m, n) z^{m} q^{n}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(z q)_{n}\left(z^{-1} q\right)_{n}}
$$

Proof: Let n in the summand of RHS demote the side of the Durfec square of a partition of Some integer.

The Durfee square contributes to $q^{n^{2}}$-1
The partition to the right of D:S. is the one in which the number of parts is $\leq \cap$ (2)
So consider $\frac{1}{(z q)_{n}}$ from the summand. If generates the partitions in (2) with z keeping track of the number of parts
By conjugation, $\frac{1}{(z q)_{n}}$ counts the number of partitions with the largest part $\leqslant n$ \& \& with z keeping track of the largest part.
 the D.S. with z^{-1} keeping track of its number of parts.
Hence power of z in the whole summand on Rots keeps track largest part in (2)-number of parts

$$
\begin{aligned}
&=(\text { largest part in } 2+n) \\
&- \text { (number of parts in }(3)+n) \\
&= \text { largest part }- \text { number of parts } \\
&=\text { rank. }
\end{aligned}
$$

This completes the proof,
Tho, 41 Let $M(m, n)$ denote the number of partitions of n with crank m. Then

$$
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} M(m, n) z^{m} q^{n}=\frac{(q)_{\infty}}{(z q)_{\infty}\left(z^{-1} q\right)_{\infty}}
$$

Proof: $\frac{(q)_{\infty}}{(z q)_{\infty}\left(z^{-1} q\right)_{\infty}}=\frac{(1-q))}{(z q)_{\infty}\left(q^{-1}\right)_{\infty}} \frac{a z}{(i)}$

$$
\begin{aligned}
& =\frac{1-q}{(z q)_{\infty}} \sum_{j=0}^{\infty} \frac{(z q)_{j}}{(q)_{j}}\left(z^{-1} q\right)^{1} \quad \text { (by q-binomial } \\
& =\frac{1-q}{(z q)_{\infty}}+\frac{1-q}{(z q)_{\infty}} \sum_{j=1}^{\infty} \frac{(z q)^{j} j}{(q)^{j}}\left(z^{-1} q\right)^{j} \\
& =\frac{1-q}{(z q)_{\infty}}+\sum_{j=1}^{\infty} \frac{\left(z^{-1} q\right)^{j}}{\left(q^{2}\right)_{j-1}\left(z q^{j+1}\right)_{\infty}} \\
& =I I+I T
\end{aligned}
$$

Combinatorial interpretation of (II):
Let the exponent of q in the summand of (II) denote the number of l's in a partition

$$
\frac{z^{-j} q^{\text {partition }} \overbrace{\left(1-q^{2}\right)\left(1-q^{3}\right) \ldots\left(1-q^{j}\right)}^{j}}{} \quad(j>0)
$$

Note that the partition " generated is the one which has j ones, ie, $\omega(\pi)=\hat{j}$.
We don't pick any I's from the denominator.

The power of z in $\frac{1}{\left(z q^{j+1}\right)_{\infty}}$
is keeping track of the number of parts greater than, j, ie. greater Wan the number of 1 's?
This is nothing but $\mu(\pi)$.
Hence putting all of this togetficer, we see that the power of z in (II) is $\mu(\pi)-\omega(\pi)$, which is the crank for $\omega(T)>0$.
Combinatorial interpretation of $I=\frac{1-q}{(z q)}$
Note that in $\frac{1}{(z q)_{\infty}}, z$ keeps track of the number of parts.
By conjugation, $\frac{1}{(z-q)}$ generates partitions π with z keeping track of the largest part.
On the other hand, $\frac{q}{(z-q)_{\infty}}$ generates partitions with at least one 1 \& where z keeps track of the largest part, only when $n>1$. (Explanation given (after).

Hence, $\frac{1-q}{(z q)_{\infty}}$ generates partitions with
no I's and where power of z is the largest part; which is the defn. of crank in this case (i.e; $\omega(\pi)=0$).
Why does it fail when $n=1$?
Note that when $n=1$, that is, the number being partitioned is 1, then q ' represents the partition. But then' the power of z from the denominator should be zero, for, otherwise, you would end up getting a partition of 1 , whose summand add up to a number >1, which is absurd.
But then 0, that is, the power of z is no longer the largest part of the partition.
Exception is $n=1$ case.

$$
\begin{aligned}
& M(0,1)=N_{V}(0,1)=(-1)^{1}=-1 \\
& \left(\vec{\pi}=(1,0,0) \int^{1}\right. \\
& M(1,1)=N_{\nu}(1,1)=(-1)^{0}=1 \\
& \vec{\pi}=(0,1,0) \\
& M(-1,1)=N_{V}(-1,1)=(-1)^{0}=1 \\
& \vec{\pi}=(0,0,1)
\end{aligned}
$$

