22110121
MA 633- Partition Theory - Lee. 31
Ramanujan's function:

$$
\sigma(q):=\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(-q ; q)_{n}}
$$

Let $\sigma(q)=\sum_{n=0}^{\infty} s(n) q^{n}$. Then Andrews showed
(i) $\limsup _{n \rightarrow \infty}|s(n)|=\infty$.
(ii) $s(n)=0$ for infinitely many n.

- These conjectures were proved by Andrews, Dyson \& Hickerson (Inventiones Mathematical)
- $\sigma(q)$ is a prototypical example of a quantum modular form.

$$
\begin{aligned}
\cdot \sigma(q)= & 1+q-q^{2}+2 q^{3}-2 q^{4}+\ldots+4 q^{45} \\
& +\ldots+8 q^{3288}
\end{aligned}
$$

Combinatorics of $\sigma(q)$:
*) $n(q)=\sum_{n=0}^{\infty} \frac{q^{n(n+11 / 2}}{(-q)_{n}}$ is, the generating for. of the number of partitions of n into distinct parts with even rank minus those with od rank,

The. 45 (Andrews) Let $r(m, n$) be the number of partitions into distinct parts with rank m.

$$
\begin{aligned}
& \sum_{m, n=0}^{\text {Then }} r(m, n) t^{m} q^{n}=\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(t q ; q)_{n}} \\
& =1+\sum_{n=1}^{\infty} t^{n-1} q^{n}\left(-t^{-1} q ; q\right)_{n-1}
\end{aligned}
$$

Remark: Letting $t=-1$ in The. 45 proves *

$$
\begin{aligned}
& \text { Proof: } \frac{q^{\frac{n(n+1)}{2}}=q^{1+2+3+\ldots+n}}{(t q ; q)_{n}}(1-t q)\left(1-t q^{2}\right) \cdots\left(1-t q^{n}\right) \\
& =\sum_{k_{1}, k_{2}, \cdots k_{n}=0}^{\infty} t^{k_{1}+k_{2}+\cdots+k_{n}} q^{1+2+3+\ldots+n+1 \cdot k_{1}+2 \cdot k_{2}+\ldots n k_{n}}
\end{aligned}
$$

Take the following partition of the number

$$
\begin{aligned}
& 1+2+3+\ldots+n+1 \cdot k_{1}+2 \cdot k_{2}+\ldots+n \cdot k_{n} \\
& \left(k_{1}+1\right)+\left(k_{2}+1\right) \cdots+\left(k_{n-1}+1\right)+\left(k_{n}+1\right) \\
& \left(k_{2}+1\right)+\left(k_{3}+1\right)+\ldots+\left(k_{n}+1\right) \\
& \left(k_{3}+1\right)+\left(k_{4}+1\right)+\cdots+\left(k_{n}+1\right) \\
& \vdots \\
& \left(k_{n}+1\right)
\end{aligned}
$$

Note that this is a partition into distinct parts.
Similarly, each partition into distinct parts can be uniquely represented in terms of k 's
(1) Start with the smallest part in such a \qquad partition \& figure out k_{n}.
(2) Then figure out k_{n-1}, \& so on.

This establistics a $1-1$ correspondence.
Note that rank of such a partition

$$
\begin{aligned}
& =\left(k_{1}+1\right)+\left(k_{2}+1\right)+\ldots+\left(k_{n}+1\right)-n \\
& =k_{1}+k_{2}+\ldots+k_{n}
\end{aligned}
$$

= power of t.
This proves the first part of the theorrean. Example: Consider $4+1$ as a partition of 5 into distinct parts.
Note that rank $=2, n=2$,
We need to figure colet only $k_{1} \& k_{2}$.

$$
\begin{aligned}
k_{2}+1 & =1 \Rightarrow k_{2}=0, \text { Also, }\left(k_{1}+1\right)+\left(k_{2}+1\right)=4 \\
& \Rightarrow k_{1}+2=4 \Rightarrow k_{1}=2,
\end{aligned}
$$

Hence the expression in the power series corresponding to this partition is

$$
q^{\frac{2 \cdot(2+1)}{2}}\left(t q_{r}\right)^{k_{1}}\left(t q^{2}\right)^{k_{2}}
$$

$$
=q^{3}(t q)^{2}\left(t q^{2}\right)^{0}=t^{2} q^{5} 5^{\text {rank }} \text {. being partitioned. }
$$

To prove the second part, note that in the sum $1+\sum_{n=1}^{\infty} t^{n-1} q^{n}\left(-t^{-1} q ; q\right) n-1$,
n demotes the largest part of a partition into distinct parts. Note that the power of t
$=n$ - number of parts
(": Whenever a part appears, the corresponding power of q has a t^{-1} attached to it.)
= rank.
Hence

$$
\begin{aligned}
& =1+\sum_{n=1}^{\infty} t^{n-1} q^{n}\left(-t^{-1} q ; q\right) n-1 \\
& =\sum_{m=0}^{\infty} r(m, n) t^{m} q^{n} .
\end{aligned}
$$

Two identities of Ramanujan from the Lost Notebook
(i) $\sum_{n=0}^{\infty}\left((-q ; q)_{\infty}-(-q ; q)_{n}\right)=(-q ; q)_{\infty} D(q)+\frac{1}{2} \sigma(q)$,
where $D(q)=-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}}$.
Note that $\sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} q^{m n}$

$$
\sum_{k=1}^{\infty}\left(\sum_{n \mid k} 1\right) q^{k}=\sum_{k=1}^{\infty} d(k) q^{k}
$$

number of positive
divisors of divisors of k,

$$
\text { (ii) } \begin{aligned}
& \sum_{n=0}^{\infty}\left(\left(\frac{1}{\left.q ; q^{2}\right)_{\infty}}-\frac{1}{\left(q ; q^{2}\right)_{n}}\right)\right. \\
= & \frac{1}{\left(q ; q^{2}\right)_{\infty}} D\left(q^{2}\right)+\frac{1}{2} \sigma(q)
\end{aligned}
$$

