27110121
MA 633- Partition Theory - Lee. 32
The. 47 (Andrews)
Let $S_{n}(q)=(-q ; q)_{n}$ \& let $S(q)=(-q ; q)_{\infty}$. Then

$$
\sum_{n=0}^{\infty}\left(S(q)-S_{n}(q)\right)=\sum_{k=1}^{\infty} k q^{k}(-q ; q)_{k-1}
$$

Proof: Take a partition of a positive integer into distinct parts with largest park $=k$.
These are counted on LHS by $S(q)-S_{0}(q)$ $S(q)-S,(q), \ldots, S(q)-S_{k-1}(q)$
But such partitions are k-1not counted by $S(q)-S_{n}(q)$, where $n \geqslant k$,

Example: $k=2$.

$$
\begin{aligned}
& (-q ; q)_{\infty}-(-q ; q)_{2}= \\
& (-q ; q)_{2}\left(\left(-q^{3} ; q\right)_{\infty}-1\right) \\
& =(1+q)\left(1+q^{2}\right)\left(\left(1+q^{3}\right)\left(1+q^{4}\right) \ldots-1\right)
\end{aligned}
$$

Note that this power series starts with q^{3}. Hence it cannot enumeratepartitions with largest part $=2$.

Hence such partitions are counted on LHS with weight $=k$.

This proves the identity as the RHS does the same,

The. 48 (Andrews)

$$
\text { Let } S_{n}^{*}(q)=\frac{1}{\left(q ; q^{2}\right)_{n+1}} \& S^{*}(q)=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

Then

$$
\sum_{n=0}^{\infty}\left(s^{*}(q)-S_{n}^{*}(q)\right)=\sum_{k=0}^{\infty} \frac{k q^{2 k+1}}{\left(q ; q^{2}\right)_{k+1}}
$$

Proof: Take a partition of a positive integer into odd parts with largest part $=2 k+1$,
This partition is counted by $S^{*}(q)-S_{0}^{*}(q)$, $\ldots \delta^{*}(q)-S_{k-1}^{*}(q)$.
But the terms $S^{*}(q)-S^{*}(q), n \geqslant k$, do not count such partitions,?
Example: $k \leq 2$

$$
\frac{1}{\left(q ; q^{2}\right)_{\infty}}-\frac{1}{\left(q ; q^{2}\right)_{2}}=\frac{1}{\left(q ; q^{2}\right)_{2}}\left(\frac{1}{\left(q ; q^{2}\right)_{\infty}}-1\right)
$$

$$
\begin{aligned}
& =\frac{1}{(1-q)\left(1-q^{3}\right)}\left\{\frac{1}{\left.1-q^{5}\right)\left(1-q^{7}\right) \ldots}\right\} \\
& =\left(1+q+q^{2}+\ldots\right)\left(1+q^{3}+q^{6}+\ldots\right) \\
& \times\left\{\left(1+q^{5}+q^{10}+\ldots .\right)\left(1+q^{7}+q^{14} \ldots \ldots\right) \cdots-1\right\} \\
& =q^{5}+\ldots . . .
\end{aligned}
$$

So the pto. into add parts with larges b part $=5$ is getting counted, in the difference $S^{*}(q)-S^{*}(q)$.
So such pins. are counted with weight k.
This proves the idly. as the RHS counts the same.

$$
\begin{aligned}
& \text { * } D(q)=-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}} . \\
& =-\frac{1}{2}+\sum_{n=1}^{\infty} d(n) q^{n} \quad(d(n) \text { : divisor fan-) }
\end{aligned}
$$

$D(q)$ is the generating f_{n}, of partitions into mon-distinct parts.

Example: $n=6$:
partitions of 6 into non-distinct parts:

$$
\left.\begin{array}{c}
6 \\
3+3 \\
2+2 \\
1+1+1+1+1+1
\end{array}\right\}
$$

There are $d(6)$ many such partitions.

We will prove sum-of-tails identities in Theorem 46 in a tutorial session.

ROGERS - RAMANUJAN IDENTITIES
The. 49 (i) $\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\left(q ; q_{n}\right.}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}$.
(ii) $\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty} \text {. }}$

Euler's theorem: The number of partitions of an integer n into add parts equals the number of partitions of n into parts which differ by at least ones

$$
(-q ; q)_{\infty}=\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

